

ibm.com/redbooks

WCS V5.1 Performance
Tuning

Daesung Chung
Andreas Gollwitzer

Michael Grant
Richard Thorpe

Jean-Philippe Visee
Larry Kurtz

Performance guideline for your
e-commerce site

Understand the hot spots in WCS

Explained with
implementation examples

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WCS V5.1 Performance Tuning

July 2001

International Technical Support Organization

SG24-6258-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2001)

This edition applies to Version 5.1 of IBM WebSphere CommerceSuite Pro, 13P0853 for use with
the AIX 4.3.3

This document created or updated on July 6, 2001.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 207.

Contents

Figures . ix

Tables . xi

Preface . xiii
The team that wrote this redbook. xiii
Special notice . xv
IBM Trademarks. xv
Comments welcome. xv

Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 1
1.1 New architecture of WebSphere Commerce Suite 5.1 3

1.1.1 The standard topologies of WebSphere Commerce Suite 3
1.1.2 Our test environment. 10

1.2 WebSphere Commerce Suite application architecture 11
1.2.1 WebSphere Commerce Suite and the HTTP Server 12
1.2.2 WebSphere Commerce Suite and WebSphere Application Server . 13
1.2.3 WebSphere Commerce Suite and DB2 . 14

Chapter 2. Quick reference guide . 15
2.1 Overview of tuning procedures . 16
2.2 HTTP server tuning tips . 16
2.3 Application server tips . 17

2.3.1 Adjusting Queue Sizes . 18
2.4 Commerce Suite server tips . 19
2.5 Database tuning tips. 21

2.5.1 Key database tuning parameters . 21
2.5.2 Database utilities . 23
2.5.3 dbclean . 24
2.5.4 Most frequently accessed tables. 24

2.6 Network tuning . 24
2.6.1 Full duplex mode . 24
2.6.2 Maximum Transfer Unit size . 25
2.6.3 thewall . 25
2.6.4 rfc1323 . 26

Chapter 3. Tuning WCS instance . 27
3.1 Tuning the WCS cache. 28

3.1.1 Enabling Cache . 30
© Copyright IBM Corp. 2001 iii

3.1.2 CacheDirsPerMember. 32
3.1.3 AutoPageInvalidation . 32
3.1.4 Cache invalidation triggers . 33
3.1.5 MaxObjectsPerMember . 34
3.1.6 CacheFilePath. 34

3.2 Session independent vs. session dependent cache 34
3.3 Caching custom WCS commands . 35

3.3.1 Adding custom pages to WebSphere Commerce Suite cache 35
3.3.2 Checking that the cache is working with your new settings 38

3.4 Optimizing cache performance . 40
3.5 Setting up caching in 3-tier topology. 41
3.6 Job scheduler . 44

Chapter 4. Database tuning . 47
4.1 WebSphere Database Distribution . 48

4.1.1 WAS Administration Database . 48
4.1.2 WAS persistent session management database 52
4.1.3 WebSphere Commerce Suite Database . 54

4.2 Planning for database layout . 55
4.2.1 Recommendations for tablespace layout . 58

4.3 Improving performance by data striping . 61
4.4 Separate tablespace for indexes . 62
4.5 Adjusting database bufferpool size . 63
4.6 Running reorg and runstats . 66

4.6.1 runstats . 66
4.6.2 reorg . 67

4.7 Effect of the database cleanup utility . 69
4.7.1 Running dbclean . 69
4.7.2 Identifying most frequently accessed tables 70

4.8 Tuning other database parameters . 72
4.8.1 applheapsz . 73
4.8.2 pckcachesz . 73
4.8.3 maxappls . 73
4.8.4 locklist . 74
4.8.5 maxlocks . 74
4.8.6 maxagents. 75

4.9 Reducing deadlocks . 76

Chapter 5. Tuning WebSphere Application Server. 77
5.1 Adjusting queue sizes . 78

5.1.1 Closed queues versus open queues. 78
5.1.2 Queue settings in WebSphere . 79
5.1.3 Determining queue setting . 83
iv WCS V5.1 Performance Tuning

5.1.4 Queue adjustments . 87
5.1.5 Adjusting transport queue type . 88

5.2 Tuning JVM . 89
5.2.1 JVM heap size. 92
5.2.2 Monitoring garbage collection . 93

5.3 Relaxing auto reloads. 96
5.3.1 Servlet auto reload . 97
5.3.2 JSP reload interval . 98

5.4 Tuning EJB performance . 99
5.4.1 Tuning EJB container cache . 100
5.4.2 Tuning EJB pools . 103

5.5 Effect of enabling WAS session management 105
5.6 Prepared statement cache . 110

5.6.1 Choosing a value for the prepared statement cache 110
5.6.2 Enabling and changing the prepared statement cache. 111
5.6.3 Prepared statement key cache . 111

5.7 Call-by-reference . 112
5.8 Optimizing logging systems . 113

5.8.1 IHS logs. 114
5.8.2 WAS logs . 115
5.8.3 WCS logs . 120

5.9 Avoiding file serving servlet . 123
5.10 HttpSessions in JSP . 126

Chapter 6. Tuning Web Server . 127
6.1 Process handling . 128

6.1.1 MaxClients . 128
6.1.2 StartServers . 129
6.1.3 MaxSpareServers . 129
6.1.4 MinSpareServers . 129
6.1.5 MaxRequestsPerChild . 130
6.1.6 ListenBacklog . 130

6.2 Connection . 131
6.2.1 KeepAlive . 131
6.2.2 KeepAliveTimeout . 131
6.2.3 MaxKeepAliveRequests . 131
6.2.4 TimeOut . 132

6.3 Resource Usage. 132
6.3.1 RLimitCPU . 132
6.3.2 RLimitMEM . 133
6.3.3 RLimitNPROC . 133

6.4 Name resolution . 133
6.4.1 HostnameLookups . 133
 Contents v

6.5 Effect of using Fast Response Cache Accelerator 134

Appendix A. Performance Monitoring Tools. 137
WCS Performance Monitor . 138
WAS Resource Analyzer . 142
WebSphere Site Analyzer . 145

Traffic analysis . 146
Integration with WCS . 147

Page Detailer . 147
AIX monitoring tools . 151

Tools to monitor general system performance metrics 151
Tools to monitor network. 153
CPU tuning . 157
Disk I/O . 161
Memory . 164

DB2 Monitoring Tools . 168
Snapshot Monitor . 168
Event monitor . 169
The Explain Facility . 171
CLI/ODBC/JDBC Trace Facility . 171

Silk Preview . 172

Appendix B. Oracle tuning tips . 173
Top 10s . 174
Recommended values . 175
Tips for physical layout design . 176
Optimizing sorts . 177

Appendix C. Sample Outputs . 179
DB2 snapshot output . 180
DB2 event monitor sample output . 192

Appendix D. GCStats.java . 199
GCStats.java . 200

Related publications . 205
IBM Redbooks . 205

Other resources . 205
Referenced Web sites . 206
How to get IBM Redbooks . 206

IBM Redbooks collections. 206
vi WCS V5.1 Performance Tuning

Special notices . 207

Index . 209
 Contents vii

viii WCS V5.1 Performance Tuning

Figures

1-1 1-tier topology . 4
1-2 2-tier topology . 5
1-3 Horizontal scalability . 6
1-4 3-tier topology . 7
1-5 Large scale topology using multiple WAS machines 8
1-6 Software components of V 5.1 vs. V4.1. 12
3-1 Enabling caching with WCS configuration manager 31
3-2 Adding a new URL to the WebSphere Commerce Suite cache. 36
3-3 Assigning a value to Key Set #1 . 36
3-4 Assigning a value to Key Set #2 . 37
3-5 Assigning a value to Key Set #3 . 37
3-6 Assigning the memberId key . 38
3-7 Deselecting Multicurrency, multilingual support of cache manager 40
3-8 Adjusting cache manager for 3-tier configuration 42
3-9 Disabling session-dependent cache . 43
4-1 Enabling container managed session persistence. 54
4-2 Table spaces, tables, and containers . 56
4-3 Most frequently accessed tables . 71
5-1 WebSphere Queuing Network . 78
5-2 Adjust queue size in Servlet Engine . 81
5-3 Adjust queue size of data source. 82
5-4 Example for WCS queue settings . 84
5-5 Throughput curve example . 86
5-6 Adjusting queue type . 88
5-7 Adjusting transport type . 89
5-8 Tuning JVM settings with the Administrative Console 91
5-9 JVM garbage collection . 93
5-10 Using Resource Analyzer for JVM monitoring . 95
5-11 Adjusting servlet auto reload . 98
5-12 Adjusting JSP reload interval . 99
5-13 EJB Container cache parameters . 101
5-14 Cache absolute limit. 103
5-15 Setting EJB pool size . 104
5-16 Switching from WCS to WAS session management 106
5-17 Enabling persistent session management . 108
5-18 Configuring persistent session management . 109
5-19 Adjusting prepared statement cache size . 111
5-20 Adjusting prepared statement key cache. 112
© Copyright IBM Corp. 2001 ix

5-21 WebSphere Commerce Server command line arguments 113
5-22 Serious Event preferences screen . 117
5-23 WAS Application Server stdout and stderr log entries 119
5-24 Turning off Debug option . 120
5-25 WCS Log System General settings . 121
5-26 WCS Log System Advanced settings . 122
5-27 WCS Configuration Log Settings . 123
5-28 Disabling File Servlet . 125
A-1 Enabling WCS PerfMonitor Component . 139
A-2 Logging on to WCS admin console . 140
A-3 Starting WCS Performance Monitor. 141
A-4 Sample output of WCS Performance Monitor 142
A-5 Resource Analyzer component measurements 144
A-6 Page Detailer window . 148
A-7 Page Detailer result for http://www.ibm.com . 149
A-8 Page Detailer Legend . 149
A-9 Page Detailer details . 150
x WCS V5.1 Performance Tuning

Tables

2-1 MTU size by network type . 25
3-1 WebSphere Commerce Suite cache parameters. 30
4-1 Database client/server configuration checkpoints 49
4-2 Design of physical layout . 58
4-3 Key parameters used for database tuning . 72
5-1 Adjust queue size in web server . 79
5-2 Adjusting queue size in Servlet Engine . 80
5-3 Adjust queue size of data source. 81
6-1 Recommended values for tunable parameters 175
© Copyright IBM Corp. 2001 xi

xii WCS V5.1 Performance Tuning

Preface

This IBM Redbook provides detailed information on how to tune WebSphere
Commerce Suite V5.1. The biggest innovation introduced in WCS V5 is that it is
based on pure-Java programming model. Its business components have been
rewritten in Java servlets and EJBs. IBM WebSphere Application Server
provides the underlying framework for the new programming model. For this
reason, the redbook project team devoted considerable amount of time to study
the impact of the new Java architecture from the performance point of view. We
put emphasis on verifying whether the tuning techniques developed for
WebSphere Application Server could be also applied to V5.1. We also introduce
various performance monitoring tools that can be used in the tuning process.
Some knowledge of WebSphere Application Server V3.5 and DB2 UDB is
assumed.

A word to note regarding platform specific information. The standard operating
system environment the project team tested was AIX. However, we think most of
the technical tips and parameter names presented in this book can be equally
applied to Windows NT environment. Tips that are applicable to only one
operating system are marked as shown on the left.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin Center.

Daesung Chung is working at ITSO, Austin Center, and is in charge of
e-business solutions on IBM ^pSeries and RS/6000. He writes
extensively and teaches IBM classes worldwide on e-business solutions and
UNIX. His areas of study are implementation, capacity planning, and
performance tuning of WebSphere family products. He also has years of
experience in UNIX system management. Before joining ITSO, he was a
Consulting IT specialist at IBM Korea.

Andreas Gollwitzer is working at Haitec AG business partner company in
Germany as an e-business consultant and system engineer. He has more than
two years of experience in WebSphere family products. His areas of expertise
include architecture, development, and performance tuning as well as monitoring
of WebSphere products based on AIX and Solaris.

AIX (or NT)
only!
© Copyright IBM Corp. 2001 xiii

Michael Grant is an Advisory Software Engineer at the IBM Toronto Lab in
Canada with close to 10 years of experience in the IT field. He has worked at IBM
for three years in site performance and capacity planning for WebSphere
Commerce Suite solutions. Before joining the IBM Toronto Lab, he was a
contract consultant for the Chicago Stock Exchange based in the Middle East,
and Team Leader at IBM Global Services in Canada for the Securities
Information Services group.

Richard Thorpe is a New Media Developer working in the e-Business Innovation
Centre at Hursley in the UK. He has worked at IBM for five years, performing a
number of technical roles. Richard has been developing on-line shops for the
past three years. He has worked with many different customers, and has a wide
range of experience with internet applications.

Jean-Philippe Visee is an IT Specialist in IBM France. He has worked for one
and a half years for IBM in the e-Business Innovation Center in Paris. His areas
of expertise include Lotus Domino on line web applications and WebSphere
Commerce Suite site design and development.

Larry Kurtz is a managing partner of The Preferred Solutions Group, Inc.
(www.tpsgi.com), an IBM Premier business partner based in Chicago, Illinois,
USA. His background includes over 18 years of programming, system design,
and system performance tuning for a variety of clients. Larry currently focuses on
designing and supporting secure e-business solutions for his clients using IBM’s
WebSphere family of products.

Thanks to the following people for their contributions to this project:

WebSphere Commerce Suite Development, IBM Toronto Lab
Maurus Cappa, Don Bourne, Joseph Fung, Ivan Lew

AIX Solutions Performance Team, IBM Austin
Bob Minns

IBM EMEA Technical Advocate, DB2 Servers & Architecture
Adrian Lee

International Technical Support Organization, Austin Center
Ernest A. Keenan, Matthew Parente
xiv WCS V5.1 Performance Tuning

Special notice
This publication is intended to help customers, business partners, and IBM
professionals tune WebSphere Commerce Suite V5.1.The information in this
publication is not intended as the specification of any programming interfaces
that are provided by WebSphere V3. See the PUBLICATIONS section of the IBM
Programming Announcement for Commerce Suite V5.1 for more information
about what publications are considered to be product documentation.

IBM Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at

ibm.com/redbooks

� Send your comments in an Internet note to

redbook@us.ibm.com

� Mail your comments to address on Page ii

IBM ®
e (logo)®
AIX
MQSeries
Netfinity
pSeries
SP
Wizard

Redbooks
Redbooks Logo
DB2 Universal Database
Net.Data
NetVista
RS/6000
WebSphere
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi WCS V5.1 Performance Tuning

Chapter 1. Enhancements in
WebSphere Commerce Suite
5.1

WebSphere Commerce Suite has evolved in many ways with the introduction of
Version 5.1. It has been completely re-developed to become a full Java
application.

The programming model has been re-architected and enhanced to simplify the
procedure required for customization. However, V5.1 still provides the same
functionality such as product catalog, packages and bundles and shopping carts,
and so on. WebSphere Commerce Suite V5.1 also provides the following new
functions:

� Multicultural support

� Mobile e-commerce enablement

� A better user management model to allow hierarchies between users inside
an organization

� Support of marketing campaigns

� Business intelligence tools

1

© Copyright IBM Corp. 2001 1

In this chapter we discuss the architectural changes in WebSphere Commerce
Suite 5.1 and their implication to performance. Giving detailed information on the
new functions is beyond the scope of this book. You can find more information
about the new functions in the following sources.

� What’s new in Version 5.1. The PDF copy of this document is included in
product CD under Commerce_Suite_install_path \doc
\<locale>\WhatsNew.pdf. It can also be downloaded from
http://www-4.ibm.com/software/webservers/commerce/wcs_pro/WhatsNew.p
df

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167
2 WCS V5.1 Performance Tuning

1.1 New architecture of WebSphere Commerce Suite 5.1
WebSphere Commerce Suite has revamped itself from a C++ / Net.Data centric
application to a 100% Java based application running on top of WebSphere
Application Server. As a consequence, its main architecture is now very similar
to a typical WebSphere Application Server application. Taken out of the box, it
can be installed in a single tier configuration. But WebSphere Commerce Suite
can also be installed in a multi-tier configuration, like any other application
running on top of WebSphere Application Server. The primary purpose of this
book is to study architectural and configurational issues affecting performance.
We mostly study the question of whether tuning techniques developed for
WebSphere Application Server can also be applied to WebSphere Commerce
Suite 5.1.

By default, WebSphere Commerce Suite is installed with IBM DB2 and IBM
HTTP Server. It is beyond the scope of this book to study performance variation
caused by using non-standard software components such as Oracle and
Netscape iPlanet Server. You may also install optional products provided with
WebSphere Commerce Suite such as Commerce Integrator (basically
MQSeries), Blaze Advisor, Macromedia LikeMinds, or Payment Manager.
However, none of them will be covered in this book.

In the following sections, we are going to review the standard WebSphere
Commerce Suite architecture and how we modified it to get better performances.

1.1.1 The standard topologies of WebSphere Commerce Suite

1-Tier topology
If you choose the default settings during installation, WebSphere Commerce
Suite will be installed as a single tier, with IBM HTTP Server, IBM WebSphere
Application Server, and IBM DB2 Universal Database installed on the same
machine.

Figure 1-1 on page 4 presents a diagram of 1-tier configuration.
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 3

Figure 1-1 1-tier topology

We do not recommend this architecture for a production environment because it
does not scale well under high volume of transactions.

2-Tier topology
WebSphere Commerce Suite Version 5.1 allows you to easily implement 2-tier
topology, installing a DB2 client on the Web server and the DB2 server on a
separate machine. Figure 1-2 on page 5 presents 2-tier topology.

Optional Firewall

Connection to Web

Web Server

Plug-in

HTTP requests

WebSphere Application Server

Administration
Server

WCS
Application

Server

Database Server

WAS
database

WCS store
database

Machine A
4 WCS V5.1 Performance Tuning

Figure 1-2 2-tier topology

This second architecture allows you to relieve the Web server machine from the
load of processing database transactions. You can expand processing power by
adding more application server machines in the second tier. The configuration
can easily be expanded to clustered configuration balancing workload through
WLM.

Figure 1-3 on page 6 shows a horizontal scalability of WebSphere Commerce
Suite V5.1. The test was done by gradually incrementing the number of WCS
machines in the second tier. As you see in the graph, V5.1 provides excellent
horizontal scalability.

Optional Firewall

Connection to Web

Web Server

Plug-in

HTTP requests

WebSphere Application Server

Administration
Server

WCS
Application

Server

Database Client

Optional Firewall

Database Server

WAS
database

WCS store
database

Machine A

Machine B
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 5

Figure 1-3 Horizontal scalability

3-Tier topology
The third option is to install WebSphere Commerce Suite in a 3-tier topology.
This consists of installing IBM HTTP Server and WebSphere Application Server
on two separate machines forming the first and second tier. The machine running
IBM DB2 is the third tier. Besides superior scalability, this option also provides
better network security. You can reinforce the protection level for the WCS
machine by adding another firewall between the web server and the WCS server.
This is a new feature of WebSphere Commerce Suite 5.1 introduced with the
integration into WebSphere Application Server. This 3-tier topology allows to give
dedicated machines to each major component of the standard WebSphere
Commerce Suite installation. Figure 1-4 on page 7 describes a 3 tier
configuration.

1 2 3

of WCS machines

W
C

S
C

m
ds

/S
ec

Horizontal Scalibility
WCS cache on/ 2-tier
6 WCS V5.1 Performance Tuning

Figure 1-4 3-tier topology

A large-scale topology
If your commerce site needs to process high volume of transactions, you will
want to have a more scalable architecture than what was described previously.
You may also want build more redundancy in your architecture to provide
non-stop service. The architecture shown in Figure 1-5 on page 8 can address
such needs.

Optional Firewall

Connection to Web

Web Server

Plug-in

HTTP requests

Remote OSE

WebSphere Application Server

Administration
Server

WCS
Application

Server

Database Client

Optional Firewall

Database Server

WAS
database

WCS store
database

Machine A

Machine B

Machine C

Optional Firewall
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 7

Figure 1-5 Large scale topology using multiple WAS machines

One of the advantages of the above architecture is scalability. This configuration
can support far heavier load by accommodating multiple web application servers.

This architecture consists of the following components:

� Application layer:

– Web browser

– IP sprayer

HTTP requests

Optional Firewall

Connection to Web

Database Server

WAS
database

WCS store
database

Machine C

Sprayer

Remote OSE

Optional Firewall

Web Server

Plug-in

Machine A-1

Web Server

Plug-in

Machine A-2

WebSphere Application Server

Administration
Server

WCS
Application

Server

Database Client

Machine B-1

WebSphere Application Server

Administration
Server

WCS
Application

Server

Database Client

Machine B-2

Optional Firewall
8 WCS V5.1 Performance Tuning

– HTTP server

– Application server

– Database server

� Data exchange layer:

– Network between the web browser and the data flow dispatcher (if any)

– Network between the IP sprayer and the HTTP server

– Network or the queue between the HTTP server and the application server

– Network or the queue between the application server and the database
server

Using an IP sprayer such as IBM Network Dispatcher provides both scalability
and load balancing to your commerce application. Basically, this product allows
you to have multiple servers working in parallel.

The HTTP servers forms the front-end layer that handles all the requests for your
commerce application, and therefore can be a bottle necking factor. How to tune
the IBM HTTP Server is covered in Chapter 6, “Tuning Web Server” on page 127.

On a typical commerce site, most of the pages are dynamic. Requests for
dynamic contents on your commerce site are processed by WebSphere
Application Server. In a 3-tier topology, HTTP server runs on a machine different
from the machine on which WebSphere Application Server is running.
WebSphere Application Server provides two options for dispatching the requests
from the HTTP server. The first option is to use Servlet Redirector and the
second option is to use Open Servlet Engine (OSE) Remote protocol. There are
advantages and disadvantages for each of the them. In terms of performance,
OSE Remote is typically faster by 15-30% than Servlet Redirector, and we
recommend you to use OSE Remote whenever possible. Because WebSphere
Application Server is sophisticated middleware, there are many other tunable
parameters in the tool. Chapter 5, “Tuning WebSphere Application Server” on
page 77 of this book is dedicated to performance tuning of WebSphere
Application Server.

Note: Network Dispatcher is now a part of IBM WebSphere Edge Server
product. Further information on this product can be found on
http://www-4.ibm.com/software/webservers/edgeserver/
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 9

Because all of information on your commerce site is stored in a database and
every shopping transaction theoretically retrieves data from the database,
managing the database performance is critical. Even though WebSphere
Commerce Suite provides various ways to minimize database transactions, we
think database tuning is one of the most important tasks you should pay attention
to. Tuning of IBM DB2 Version 7.1 is described in Chapter 4, “Database tuning”
on page 47.

Networking is also an important factor, and can cause a performance bottleneck.
However, we excluded network tuning because it is too broad a subject to be
contained in this book, and network tuning requires wholly different set of
disciplines from that of WebSphere administrator.

1.1.2 Our test environment
In order to tune WebSphere Commerce Suite, we have tested several different
configurations. All our tests were done on AIX machines connected to a
token-ring network. The load was generated by SilkPerformer running on
Windows NT machines.

Our test environment is detailed below.

Hardware
The following are the machines we used to do our tests. We used them in many
different test scenarios.

� Machine A is a S7A with 1 GB of memory and 12 processors.

� Machine B is a F50 with 1 GB of memory and 4 processors.

� Machine C is a F50 with 1 GB of memory and 4 processors.

� Machine D is a F50 with 1 GB of memory and 2 processors.

� Machine E is a F50 with 512 Mb of memory and 2 processors.

� Machine F is a 44 P 170 with 768 MB of memory and 1 processor.

� Machine G is a 44 P 140 with 768 MB of memory and 1 processor.

� Machine H is a 43 P 140 with 768 MB of memory and 1 processor.

Note: From a viewpoint of performance tuning, application tuning is another
important topic. Often performance problems originate from a poorly designed
piece of code. However, the subject is not discussed in this book, either,
because we decided to concentrate on the architectural and component-level
perspective.
10 WCS V5.1 Performance Tuning

� Machine I is a Netfinity 3000 with 196 MB of memory and 1 processor.

� Machine J is a NetVista with 512 MB of memory.

� Machine K is ^ pSeries 640 with 4GB memory, 4 processors, and 33
SSA disks

Software
Here is the list of the software we used for the making of this book:

� WebSphere Commerce Suite Version 5.1:

– WebSphere Application Server Version 3.5 for AIX with FixPack 2 and
eFixes.

– IBM DB2 UDB Version 7.1 for AIX

– IBM HTTP Server Version 1.3.12 for AIX

– WebSphere Commerce Server Version 5.1

� Performance monitoring tools:

– WebSphere Application Server Resource Analyzer

– IBM Performance Toolbox 2.2 for AIX

� Workload generator:

– Segue SilkPerformer Version 3.5.1 for Windows NT

Operating systems
� IBM AIX Version 4.3.3.0 with maintenance level 6

� Microsoft Windows NT 4 with Service Pack 5

Network
All the server machines were on the same network segment except the Windows
NT machines that were used as SilkPerformer testing clients.

1.2 WebSphere Commerce Suite application
architecture

WebSphere Commerce Suite integrates with many software server components
such as the IBM HTTP server, IBM WebSphere Application Server and IBM DB2
Universal Database. In the rest of this chapter, we will see how these
components interact with each other in WebSphere Commerce Suite. Figure 1-6
on page 12 summarizes the architectural differences between V4.1 and V5.1.
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 11

Figure 1-6 Software components of V 5.1 vs. V4.1

1.2.1 WebSphere Commerce Suite and the HTTP Server
In WebSphere Commerce Suite V5.1, a web server provides the
communications link between browser-based applications and the other
components of WebSphere Application Server. A web server plug-in is installed
with the web server that detects and forwards requests for the services of an
application server defined in WebSphere Application Server. The application
server receives the requests from the plug-in and coordinates services of
servlets and Enterprise JavaBeans (EJBs).

The web server plug-in plays a role in the following two respects. First, the
plug-in is linked to a WebSphere Commerce Suite’s plug-in, which is used by the
standard WebSphere Commerce Suite cache.

Second, the plug-in also takes part in workload balancing work under the WLM
environment. It looks up a list of available WebSphere Application Server clones,
then directs the incoming requests to the most available server.

Database Schema

Display Logic (Net.data macros)

Business Logic

Overridable Func Commands

WAS

JDK

Domino

Net.Data
DB2

DB2 Text
Extender

AIX SecureWay

V5 Database Schema

Display Logic (JSP)

Business Logic (Java)

Task Commands Controller
Commands

V5

JDK
1.2.2

Domino

WAS 3.5.2
DB2
7.1DB2 Text

Extender

AIX SecureWay

V4

Note: For this reason, if you want to switch on or off WebSphere Commerce
Suite cache, you have to restart your WebSphere Commerce Suite instances
in both WebSphere Application Server and your web server.
12 WCS V5.1 Performance Tuning

1.2.2 WebSphere Commerce Suite and WebSphere Application
Server

WebSphere Commerce Suite (WCS) runs as an application in WebSphere
Application Server. It uses both Enterprise JavaServer (EJS) Servlet Engine and
EJB Container. In the traditional Java programming model, JavaServer Pages
(JSPs), and Servlets are used in the presentation layer and the EJBs are usually
used to implement business logic. However, unlike conventional WebSphere
Application Server applications, WCS uses EJBs to access the database
whereas it uses servlets and WCS commands to implement business logic. WCS
commands are implemented as JavaBeans. You can think of WCS as a
servlet/command based engine that uses EJBs to access data and JSPs to
implement the presentation layer applications.

The EJB Container
WebSphere Commerce Suite uses EJBs to access all application data. As a
consequence, there are nearly 240 EJBs in the WebSphere Commerce Suite for
more than 290 tables. Because the number of EJBs are large, initializing the
EJBs could be a problem. To solve this problem, WebSphere Application Server
Version 3.5 Advanced uses a “lazy initialization” mechanism by default to
improve the speed of EJB initialization.

The EJBs in WebSphere Commerce Suite V5.1 do not contain any business
logic. The business logic is written in “commands” and “tasks” Java classes. This
reduces the frequency of using EJBs to a minimum value. WebSphere
Commerce Suite uses only entity beans and stateless session beans. The
stateless session beans are used to process complex SQL requests. In order to
simplify the access to the EJBs and optimize their use, WebSphere Commerce
Suite accesses EJBs through access beans. Access Beans store EJB values in
caches, thus reducing access time.

Note: The lazy initialization on EJBs in WebSphere Application Server.

When you call a finder method of an EJB home, WebSphere Application
Server responds with an enumeration of “empty” elements. In fact those are
true Entity Beans taken from the EJB instances pool, but their state is not yet
“ready”. WebSphere Application Server does not do the fetch in the database
until a business method has been called on one of the instances brought back
in the enumeration.
 Chapter 1. Enhancements in WebSphere Commerce Suite 5.1 13

The bigger the number of jar files containing EJBs, the longer the startup time of
the EJB container will be. To resolve this performance issue, all WebSphere
Commerce Suite EJBs are packed in a single jar file to achieve best startup
performance. The name of the jar file is
/usr/lpp/CommerceSuite/lib/wcsejsdeployed.jar.

1.2.3 WebSphere Commerce Suite and DB2
WebSphere Commerce Suite version 5.1 now relies completely on WebSphere
Application Server for database connections. The database schema was
redesigned completely to support new functions and to fit better with the new
persistent objects layer that is now the base of WebSphere Commerce Suite
programming model.

In addition to the WebSphere Commerce Suite database, which contains product
and shopper information, two additional databases are used; one by WebSphere
Administration Server and the other to store persistent session information. Note
that persistent session management database is optional, whereas the
WebSphere Administration Server database is mandatory.

In case that IBM Payment Manager is used, you need to manage one more
database. Payment Manager uses database tables to maintain information on
the status of transactions, approval requests, and deposit requests. The records
in these tables are kept for working purposes and for tracking and
record-keeping. The database also contains configuration information. Monitor
the performance of this database as well as the performance of the other two
databases. For further information on IBM Payment Manager, refer to
http://www.ibm.com/software/webservers/commerce/paymentmanager.
14 WCS V5.1 Performance Tuning

Chapter 2. Quick reference guide

The purpose of the Quick reference section is to provide you with an overview of
many of our tuning observations during the writing of this Redbook. The most
important observation to point out is that WebSphere Commerce Suite V5.1 is a
database application and should be tuned in that fashion. Additionally, tuning is
not a quick fix for application performance improvements, but a continual
process that needs to be repeated and reviewed on a regular basis. The
characteristics of transactions processed by your system site and the
performance goal of your site are major factors determining how often you need
to review the various tuning ideas presented within this redbook.

The tips presented here are meant to be used as a guideline and not hard and
fast rules. Every change that is made will have an effect on other parts of the
system. These effects may not be apparent at first, but may become evident over
time as the system or database loads increase. Understanding the relationship
between the different building blocks of WebSphere Commerce Suite will help
you in determining what tuning changes may need to be implemented and what
effect they may have on other components.

Some of the quick tips covered in this chapter include:

� HTTP server tuning tips

� Application server tips

� CommerceSuite server tips

� Database tuning tips

2

© Copyright IBM Corp. 2001 15

� Operating system tips

Some tuning changes can have an immediate effect, while others may not be
noticed at all initially. The key point in performance tuning is to take steps and
review the results each time. And the first step in any performance tuning
exercise is understanding the base line, or how the system is performing before
any changes are made. While it is unlikely that a system will perform at its best
right out of the box, you should at least test and document what the base line
performance is for your system installation. That way once changes are tried and
documented, there is something to compare your new results against.

2.1 Overview of tuning procedures
One of the first steps in tuning is to first establish a baseline so that you will know
what changes have improved or degraded the system performance.

Tuning the HTTP server is a good next step, as all users who will access your
system have to first connect through the HTTP server.

Working with the application server or the middle tier of the application should be
next. Because most all HTTP requests will be serviced by the application server,
adjusting values here should be made in conjunction with the HTTP server.

Database tuning takes into account many aspects of system performance, from
buffer pools to disk layout to indexes. Each one needs to be individually reviewed
and monitored as changes are made to maximize your database servers
throughput.

2.2 HTTP server tuning tips
There are some performance gains that can be achieved from some simple
changes within the HTTP server. The exact values that you will use may vary in
your installation based upon your type of installation such as in a 2-tier or 3-tier
installation. But even the amount of memory and the number of CPU’s installed
can have an effect on this value.

MaxClients
But as a general rule, the MaxClients parameter should be changed from the
default value of 150 to around 50. Again, even a number of 50 may be too high in
your environment. This parameter is the maximum number of HTTP server
processes running in memory, or the maximum number of web clients making
requests at any given time.
16 WCS V5.1 Performance Tuning

The goal in changing this setting is to achieve close to 85 to 90 percent CPU
utilization while not waiting on I/O from disks. You can use the vmstat command
to display average CPU usage for a given time period.

StartServers
This parameter determines the number of HTTP daemons started initially. Its
default value is 5. This can be controlled using the StartServers directive in the
httpd.conf file. Setting this value equal to the value of MaxClients will start the
maximum number of HTTP daemons at once.

MaxSpareServer
Setting the MaxSpareServer equal to the MaxClients setting will keep all of the
HTTP servers running and available, reducing startup and shutdown times.

More about HTTP tuning can be found in Chapter 6, “Tuning Web Server” on
page 127.

2.3 Application server tips
The WebSphere Application Server offers a number of parameters that can be
adjusted that will have an effect on the overall performance of the system, good
or bad. Each should be reviewed carefully and changed and tested for your
actual system implementation. While most of these settings will provide positive
performance gains, your actual system environment will dictate what settings will
work best.

JVM Heap
Increasing the JVM heap size is one of the values that is usually changed first.
The idea behind this is that if more memory is made available to the JVM, then
the underlying Java application will perform better. As a rough sizing guideline,
we found 512 MB of physical memory per processor would be optimal.

But more memory is not always better when it comes to performance tuning.
Changes should be made and then monitored to determine if any gains have
been achieved. There is no reason to have a 1GB heap size if only 512MB is
needed. Section 5.2, “Tuning JVM” on page 89 details additional JVM tuning
parameters and methods that can be used to monitor JVM performance.
 Chapter 2. Quick reference guide 17

2.3.1 Adjusting Queue Sizes
WebSphere Commerce Suite is a transaction oriented system with requests that
are received and queued at various points in the system. Understanding the
different queues and how they interact can provide the greatest performance
improvements. Setting the queues incorrectly can result in a poorly performing
system. Understanding how to determine your system’s saturation point will help
in determining the proper queue sizes for your system. The following topics
highlight some of the areas that should be checked when determining the overall
system performance of your site.

Max Connections
Reducing the Max Connections of a servlet engine so it equals the maximum
number of users that can be supported has been shown to be a far better setting
then trying to support something larger. Initially, you will want to open up all of the
queue sizes to get the baseline performance for the system and then adjust the
queue sizes down from there. This is described in further detail in Section 5.1,
“Adjusting queue sizes” on page 78.

Database Connection pool
Changing the minimum and maximum database connection pool size to a value
that can sustain DB requests from servlets will keep a constant number of
connects established, thus reducing the time it takes to establish a connection.
Do not set this number higher then what your database server can support or
what is reasonable. This is described in further detail in Section 5.1, “Adjusting
queue sizes” on page 78.

Auto-reload
Auto-reload should be disabled or at the very least set to a high time-out value to
maximize system performance. If your code is stable and in production, then it is
unlikely that it is changing that much and shouldn’t need to reloaded. Section 5.3,
“Relaxing auto reloads” on page 96 describes in detail how this setting can be
changed and what effects it will have on your system.

Transport queue types
If your system is a 2-tier environment, where the HTTP server and Application
server are on the same machine you may benefit from the use of Local Pipes. In
our test runs on AIX, we observed about a 30 percent increase in total
throughput when using Local Pipes. But Local Pipes do not scale very well as the
workload increases, so use this setting with caution.
18 WCS V5.1 Performance Tuning

INET Socket is the default for WebSphere Commerce Suite 5.1 and typically
performs better on heavy load. INET socket is mandatory in any 3-tier system,
where the HTTP server and Application server are on different systems. This is
described in further detail in Section 5.1.5, “Adjusting transport queue type” on
page 88.

2.4 Commerce Suite server tips
One of greatest performance gains that you can achieve in WebSphere
CommerceSuite is enabling the WebSphere Commerce Suite cache. While this
is the default setting during installation, it should be checked just the same to
insure that it had not been disabled. Our results during testing showed a 200
percent performance improvement when the cache was enabled. To tune other
components of WebSphere Commerce Suite, we recommend to turn off the
Commerce Suite cache. The reason is that its effect is so big that the effect of
tuning other components cannot easily be detected. But it should be re-enabled
when your system is deployed in a production environment.

One of the useful tools that we used for monitoring WebSphere Commerce Suite
was WebSphere Commerce Suite Performance Monitor. This performance
monitoring tool shows what resources are being used in a running application
server. Additional information about this tool can be found in Section “WCS
Performance Monitor” on page 138.

Cache Wizard
The feature that has the greatest impact on performances is surely the
WebSphere Commerce Suite cache. Enabling WCS cache could achieve
significant performance improvement, so turn on the cache if possible. However,
this technique is not always applicable. For instance, e-commerce sites with
heavily personalized pages won’t benefit much from turning on WCS cache.

WebSphere Commerce Suite cache allows you to cache pages generated by the
URL you specify. By default, only the following commands are cached, but your
can add others; StoreCatalogDisplay, TopCategoriesDisplay, CategoryDisplay,
ProductDisplay.

WebSphere Commerce Suite provides a Cache Wizard that assists you in
adding a new URL to the cache. Section 3.3, “Caching custom WCS commands”
on page 35 provides further information on the Cache Wizard and how adding
your commands to it will greatly improve the overall system performance.

Note: By default, WebSphere Commerce Suite cache is turned on.
 Chapter 2. Quick reference guide 19

Call-by-reference
WebSphere Commerce Suite makes use of the call-by-reference setting, which
can improve performance by up to 50 percent in some cases. This is the default
setting during installation and should not be changed. However, any custom
application code that is developed and installed should take this calling method
into consideration so as not to modify an object reference, which could cause
undesirable results. This is described in further detail in Section 5.7,
“Call-by-reference” on page 112.

WebSphere Commerce Suite session management
Web browsers and e-commerce sites use HTTP to communicate. Because
HTTP is a stateless protocol, WebSphere Commerce Suite needs a way to
manage sessions between the browser and server sides. There are two possible
choices for configuring session management in WebSphere Commerce Suite.
The first choice is to use cookie-based WCS session management, which is the
default option provided by WebSphere Commerce Suite. The other choice is to
use WebSphere Application Server’s session management. Switching to WAS
session management will have other performance impacts on the systems as
well, therefore requiring appropriate tuning. Section 5.5, “Effect of enabling WAS
session management” on page 105 provides a detailed description on the
benefits of WebSphere Commerce Suite session management versus WAS
session management, and how to switch between them.

Prepared statement cache
WebSphere Commerce Suite also makes use of a PreparedStatement cache,
which stores the database access plan so that it doesn’t have to be recomputed
each time. It improves database access performance. Section 5.6, “Prepared
statement cache” on page 110 describes how you can calculate the size of the
prepared statement cache, and where to define it.

EJB Cache
EJBs reside in the Enterprise JavaBean container of the WebSphere Application
Server, ensuring that the cache settings are important for an application like
WebSphere Commerce Suite. WebSphere Application Server has different
options associated with the EJB container and 5.4, “Tuning EJB performance” on
page 99 provides some examples in determining what settings should be used.

Cloning
One of the goals in performance tuning is to maximize the use of the processor,
provided the system is not paging or waiting on I/O from disk. One way to utilize
more of the available CPU is to clone your application server on the existing
server, otherwise known as vertical scaling. Again, your system environment and
20 WCS V5.1 Performance Tuning

the overall performance that you are achieving will dictate if cloning is needed.
Cloning has another benefit as well; that being reliability. Because you have an
additional copy of your application server running, it provides failover protection
for your application.

2.5 Database tuning tips
Database tuning can be as simple as adding a new index to a table or as
complex as separating heavily used database tables to different hard drives, and
everything in between. The key point with database tuning is to first understand
the data that is being stored and how it is accessed and used. A system created
that does mostly reading of data would be tuned differently then a transaction
originated system.

Also, a system that is designed to support a small online store would be tuned
differently then a database containing a complete listing of phone numbers and
addresses of everyone that has a telephone number. But the general tuning
principles apply to both scenarios.

Since a database is a collection of data that is stored on a disk sub-system
somewhere, there are a number of operating tools that can be used which will
provide you details about the disk operation.

The iostat and vmstat commands can be used to show the amount of reads and
writes that various disks are performing, as well as the amount of CPU time that
is spent waiting for I/O. In a properly tuned WebSphere Commerce Suite system,
there should be very little time waiting on I/O. It is because on a production
system WebSphere Commerce Suite cache is turned on to minimize the number
of queries passed to the database. Even with the cache turned on, writing to the
database is inevitable for certain type of transactions. This is where database
buffers and proper database indexes can improve performance. However, a
poorly written query that performs table scans cannot be fixed by changing the
database buffers. The key point here is to understand the application and what it
is doing. That way you can make the correct changes that will have the greatest
impact on performance.

2.5.1 Key database tuning parameters
There are several database tuning parameters that effect the operation of the
database by altering the amount of memory that can be used or by changing the
way the database engine works against the tables that it is managing. Chapter 4,
“Database tuning” on page 47 provides many suggestions on various database
tuning parameters that can improve performance. A few key observations are
listed here as a reference.
 Chapter 2. Quick reference guide 21

Database bufferpool
A database bufferpool allocates memory space for a portion of the database
records that are currently being read and stores them in memory, allowing for
faster data access to the data. The amount of memory to allocate to this buffer
depends on your system environment and performance objectives. Section 4.5,
“Adjusting database bufferpool size” on page 63 provides further detail on setting
and monitoring the performance of the database buffer cache.

applheapsz
The DB2 application heap size allocates the a block of memory that is used for
processing commands, such as updates and queries. The DB2 default value is
128 and it is recommended that this number be increased to 256 for use with
WebSphere Commerce Suite. Additional information about the changing the
applheapsz can be found in Section 4.8.1, “applheapsz” on page 73. However, to
update the applheapsz parameter, use the following command:

db2 update db cfg for <database name> using applheapsz <block amount>

pckcachesz
The package cache size is a cache which stores database access plans. This
reduces the database manager overhead, as it does not have to access the
system catalogs or recompile dynamic SQL. As WebSphere Commerce Suite
performs a lot of repetitive queries, this parameter is important when tuning the
application. Section 4.8.2, “pckcachesz” on page 73 provide additional
information about this parameter. However, to update this setting, use the
following command:

db2 update db cfg for <database name> using pckcachesz <cache size>

maxappls
This database parameter defines the maximum number of concurrent
applications that can connect to a database. This includes both remote and local
applications. The following needs to be considered when choosing this
parameter:

� The application data source maximum connection pool size

� The number of cloned servers

� Other database connections, for example, from the DB2 command line

� Maximum connection pool size of session datasource (if persistent session
management of WebSphere Application Server is going to be used).

As you can see, the value selected here is related to the values described in
Section 5.1, “Adjusting queue sizes” on page 78. Choose a value that makes
sense for your environment.
22 WCS V5.1 Performance Tuning

locklist
Locking is the mechanism that the database manager uses to control concurrent
access to data in the database. Both rows and tables can be locked.
Section 4.8.4, “locklist” on page 74 describes in more detail the effects of the
locklist and the impact it can have with WebSphere Commerce Suite. The goal in
setting this parameter is to make certain there are enough entries in the locklist
to avoid unnecessary table locks, which occur if the locklist is full. Once a table
lock is established other applications will be blocked from updating that table. As
WebSphere Commerce Suite relies on several key tables, a heavily loaded
system could generate many locks. By increasing the locklist and maxlocks
values you can avoid performance costly table locks or deadlocks.

maxlocks
The maxlocks parameter defines the percentage of the locklist held by an
application. When the number of locks held by any one application reaches this
value, the database manager will perform lock escalation for the locks held by
that application

2.5.2 Database utilities
The following database utilities alter the database by either reorganizing or
removing data that is not longer necessary. Listed below are some key DB2
tuning utilities that can be used to monitor and update the tables that are being
managed by DB2.

runstats
The DB2 runstats utility updates statistics about the characteristics of a database
table and the associated indexes. Whenever a table has a large amount of
updates to it, like during an mass import, these statistics should be updated to
optimize how the data will be accessed. Section 4.6.1, “runstats” on page 66
describes how this utility can be used.

reorg
The DB2 reorg utility can be used to reorganize database tables and eliminating
fragmented data, and compacting data. When you run this utility you can specify
whether you want to physically order the data in the table by a named index, or
simply compact the data without any reordering. This is described in further detail
in Section 4.6.2, “reorg” on page 67.
 Chapter 2. Quick reference guide 23

2.5.3 dbclean
With an active system there will come a time when you will need to remove some
data that is no longer necessary. dbclean is a flexible and extensible tool for
cleaning up your database. It removes obsolete records from WebSphere
Commerce Suite database. It is a utility shipped in WebSphere Commerce Suite
V5.1. Individual tables can be selected while maintaining referential integrity.
How often this is run is really dependent on many factors, the primary one being
the amount of data that is required to be maintained and over what period of
time. This is described in further detail in Section 4.7.1, “Running dbclean” on
page 69. You can also use dbclean to clean up the tables you have added to
expand the functionality of your e-commerce site.

2.5.4 Most frequently accessed tables
WebSphere Commerce Suite uses some database tables more than others, and
these tables are the most important to clean up over time. If there are excessive
old rows, the extra data will reduce the speed of queries against that table, which
has a negative effect on performance. Section 4.7.2, “Identifying most frequently
accessed tables” on page 70 describes how to determine which database tables
are being used the most. After identifying the busiest tables, analyze why they
are heavily used. If your custom-built applications are causing excessive
transactions on the tables, think about optimizing your codes. If the access to the
tables are legitimate, then consider allocating more system resource that will
improve performance. Relocating the tables to dedicated disk drives could be
one of the good solutions.

2.6 Network tuning
There are many options for network performance tuning available in AIX. But we
will introduce only the most important and significant tuning parameters. For
more information on this topic, refer to IBM Certification Study Guide AIX
Performance and System Tuning, SG24-6184.

2.6.1 Full duplex mode
There is always heavy network traffic between the database server, web server,
and WCS server. Network configuration is very important in this respect to
achieve good performance. Performance could get worse when you move from 1
tier configuration to 2 or 3 tier configuration. Therefore, be sure to use a network
with a large bandwidth such as Fast Ethernet to connect those machines.

This section
applies only
to AIX
24 WCS V5.1 Performance Tuning

When using Fast Ethernet, be sure to check every Ethernet adapter is set to
full-duplex mode. Full-duplex mode gives you the maximum throughput. If one
the ethernet adapters happens to set to half-duplex mode, the network
performance of between the two machines will be degraded.

2.6.2 Maximum Transfer Unit size
The Maximum Transmission Unit (MTU) specifies the maximum size of packets
(including all the protocol headers) that can be transmitted on a network. It is
important to make sure all systems on the same physical network have the same
MTU. The MTU can be displayed using the netstat -i command. Table 2-1 gives
an overview of common network adapters and their related MTU sizes.

To obtain the current setting:

lsattr -E -l <interface_name>

To change the value:

chdev -l <interface_name> -P -a mtu=<newvalue>

After changing the value, you should reboot the system to make the change
effective.

Because all systems on the same physical network should have the same MTU,
any changes made should be made simultaneously. The change is effective
across system boots.

Table 2-1 MTU size by network type

2.6.3 thewall
Specifies the maximum amount of memory, in KB, that is allocated to the
memory pool. In AIX Version 4.3.2 and later, the default value is 1/2 of real
memory or 1048576 (1 GB), whichever is smaller. thewall is a runtime
attribute. Changes take effect immediately and remain in effect until the next
reboot. For tuning, increase size, preferably in multiples of 4 KB.

Network Type Default MTU Maximum MTU Optimal

Fast Ethernet 1500 1500 1500

Token Ring 1492 17284 4096

FDDI 4352 4352 4352

Gigabit Ethernet 9000 9000
 Chapter 2. Quick reference guide 25

AIX maintains various network buffer areas in memory pool. But AIX has the
ability to self-tune those buffers, so there is no need to tune each network
buffer parameter. The only option which is not self-tuned is thewall. If the
system memory requirements exceed thewall, then it will start to drop
packets. If dropped packets are found, then increase the size of the value of
thewall parameter. The following shows how to adjust the parameter.

no -o thewall
thewall = 262124
#
no -o thewall=300000
#
no -o thewall
thewall = 300000

2.6.4 rfc1323
Value of 1 indicates that tcp_sendspace and tcp_recvspace sizes can exceed
64 KB. If the value is 0, the effective tcp_sendspace and tcp_recvspace sizes
are limited to a maximum of 65535. If you are setting tcp_recvspace and
tcp_sendspace greater than 65536, you need to set rfc1323=1 on each side
of the connection. Without having rfc1323 set on both sides, the effective
values for tcp_recvspace and tcp_sendspace will be 65536. For better
performance, we recommend that this always be set to 1. Changes take
effect immediately for new connections and remain in effect until the next
reboot. The following command can be used to set this option:

no -o rfc1323=1
26 WCS V5.1 Performance Tuning

Chapter 3. Tuning WCS instance

The WebSphere Commerce Suite (WCS) cache offers significant performance
improvements. Many of the people using websites only ever browse, without
actually buying anything. This browsing activity can result in significant overhead
for your servers without generating any sales. The WebSphere Commerce Suite
cache reduces this overhead dramatically by caching product and category
pages, resulting in reduced overhead on your servers, increased server
throughput, and faster response times to the client. When comparing test results
with the cache turned on and off, we observed performance improvements
between 200% and 300%.

This chapter discusses the following:

� Tuning the WebSphere Commerce Suite cache

� Caching custom commands

� The differences between session dependent caching and session
independent caching

3

© Copyright IBM Corp. 2001 27

3.1 Tuning the WCS cache
When a shopper browses a product or category page, most of the processing
time is spent parsing the HTTP request, accessing the database, and
dynamically creating the page the shopper requested. These dynamic contents
are generated by a few WCS commands. These commands retrieve information
from the WCS database, then display the information as a JavaServer Page
(JSP). If your product and category information has not changed since the page
was last viewed, there is no need to re-create the same contents from the
database. WCS maintains a cache for this purpose, and serves previously
generated pages much faster by retrieving from the cache. The cached contents
are saved as files under
<WCS_install_path>/instances/<instance_name>/cache/ directory.

WebSphere Commerce Suite cache can cache in the following two ways:

1. Session independent caching

Session independent caching can be used where the same file in the cache is
served to each user requesting that page. Session independent caching
stores the results of a user specified list of commands and serves these
cache pages in response to subsequent requests using the same commands.
This method is usually used for applications that do not have personalized
pages for individual users.

In general, session independent caching performs far better than session
dependent caching, so you should consider enabling session independent
caching first, then enable session dependent caching only when you need to
use multiple currencies or member groups. We have observed 200% to 300%
overall system performance improvement by enabling caching.

2. Session dependent caching

Session dependent caching caches pages by session. Use this method for
sites with distinct pages for member groups, multiple languages, or multiple
currencies. WebSphere Commerce Suite cache looks up the parameters
such as the language, currency, or member group when generating or
retrieving pages. Then WebSphere Commerce Suite cache manager will
check to which member group the user requesting the dynamic contents
belongs and figure out in which language the dynamic pages should be
displayed in. Once the page has been generated, the same contents will be
retrieved directly from the cached files managed by WebSphere Commerce
Suite in the next transaction.
28 WCS V5.1 Performance Tuning

In session dependent caching, CacheCommand is called to retrieve custom
dynamic page index parameters. Implementations of the CacheCommand
interface can be used to provide additional information for the indexing of
WCS dynamic cache pages. The CacheCommand implementation class is
called during the invocation of every command whose sessionDependent
attribute is set to "true" in the Cache section of the WCS configuration file.

During to our tests we observed that session dependent caching only
produced a 10% to 15% performance improvement over no caching. This
result is not strange considering the fact that more system resources are used
in session dependent caching to retrieve extra information from the database
as well as to communicate with the application server. Enabling session
dependent cache is beneficial if it allows you to cache pages that otherwise
would not be cacheable due to dependency on information not contained in
the HTTP request. Some personalized pages may belong to this case
depending on how they are personalized.

By default, the commands CategoryDisplay, ProductDisplay,
TopCategoriesDisplay, and StoreCatalogDisplay are enabled for session
dependent caching. You can use any combination of the two caching methods
for any of your cacheable commands.You can also enable caching for your
custom-built commands. The procedure for this is explained in Section 3.3,
“Caching custom WCS commands” on page 35.

In order for a command to be cacheable, the HTML result of that command must
not vary greatly for different users viewing the same command with the same
parameters. When you apply personalization to your site, consider the following
trade-offs between personalization and performance:

� Personalized pages

When you have pages that are fed by the personalization engine, every page
may be unique for each user. Depending on the level of personalization,
these differences could be great. Although the WCS cache could cache these
pages, it would not provide any benefit, as the cache would have to store a
copy of each page for each user. As the personalization rules may cause
pages to change depending on user actions, these pages could become
invalid after being used once, or cached, but never requested again by the
user. In this case the cache would add extra overhead for the server, slowing
things down. It is therefore advisable not to cache WCS pages that
personalize content. The exception would be where pages have simple
personalization implemented, where more than one user would see the same
page, and the pages can be distinctly separated by parameters in the URL.
 Chapter 3. Tuning WCS instance 29

� Catalogs from outside sources

When catalog pages are not generated by WCS. The WCS cache works by
caching WCS commands. This effectively means URLs served through the
WCS request servlet. If catalog pages are generated without using the
request servlet, then the cache will not be able to detect these pages being
requested, and therefore not cache them.

The WebSphere Commerce Suite cache can be tuned to improve performance.
There are several parameters to be aware of that can affect the way the cache
works. These parameters can be changed either in the WebSphere Commerce
Suite configuration manager, or by editing the <instance_name>.xml file in the
corresponding instance directory. The following table shows the tunable
parameters defined in
<WCS_install_path>/instances/<instance_name>/xml/<instance_name>.xml.

Table 3-1 WebSphere Commerce Suite cache parameters.

The main thing to consider when tuning the cache is to cache as many pages as
possible. Caching helps minimize the number of database transactions to
retrieve information from the database. Retrieving information from the database
consumes much more system resource than retrieving from the cached files. If
you have a system with a new WCS instance, it is a good idea to run test scripts
to generate and store sufficient amount of cached files on your WCS system
before the system is put into a production environment.

3.1.1 Enabling Cache
By default, the WebSphere Commerce Suite cache is NOT enabled. Therefore,
be sure to enable caching in production mode. To enable caching, invoke WCS
configuration manager and click Caching Sub System -> Advanced, then
check the Cache Enabled checkbox as seen in Figure 3-1 on page 31.

Parameter Default value Recommended value

Cache enabled Yes Yes

CacheDirsPerMember 100 100

AutoPageInvalidation True True

Cache invalidation triggers Not enabled Application dependent

MaxObjectsPerMember 500 0

CacheFilePath <WCS_install_path>/insta
nces/<instance_name>/ca
che

a directory name in a
filesystem residing on
dedicated disks to achieve
better performance
30 WCS V5.1 Performance Tuning

Figure 3-1 Enabling caching with WCS configuration manager

Or edit
<WCS_install_path>/instances/<instance_name>/xml/<instance_name>.xml
file and change Cache enabled to Yes as seen in Example 3-1.

Example 3-1 Enabling cache in instance_name.xml

<Cache MaxObjectsPerMember="10000"
 name="Caching SubSystem"
 MaxAllowedRefreshPeriod="3600"
 CacheDirsPerMember="100"
 AutoPageInvalidation="true"
 CacheConnectionTimeout="120000"
 CacheCleanupAgentHostname="localhost"
 CacheDaemonMaxThreads="64"
 Enabled="true"
 Chapter 3. Tuning WCS instance 31

It is recommended that you change the Maximum objects per member setting
from the default value of 500 to 0 (zero) at this point if you have extra disk space
for cache storage on your machine. Note that setting the value to 0 (zero) means
you have an unlimited number of cache files.

3.1.2 CacheDirsPerMember
This parameter defines the number of subdirectories in the cache directory. If you
have more directories, it reduces I/O contention for larger caches. Generally
speaking, it is best to have less than 1000 files per directory. If you have a large
number of categories and products (total greater than 100,000), then you will
need to increase this parameter. Please take into account the number of cached
pages that are going to be generated by custom commands you have configured
when calculating a value for this parameter. The procedure of configuring cache
for a custom command is explained in Section 3.3.1, “Adding custom pages to
WebSphere Commerce Suite cache” on page 35.

3.1.3 AutoPageInvalidation
The AutoPageInvalidation parameter enables or disables the cache cleanup
worker. This is needed if you are using cache invalidation triggers, or
CacheDelete command. Disabling AutoPageInvalidation will reduce the system
overhead slightly, but you are then responsible for cleaning up the cache
manually. We recommend that you leave this parameter set to true in most
cases, especially if you have a product base that changes frequently.

However, if your product catalog changes infrequently, then you may prefer to
delete the cached files manually instead of using cache cleanup worker. If you
choose to delete the cache files manually, then you need to identify which file
corresponds with the changed product item. You can easily figure out what the
file is caching from its naming convention. The following is an example of cached
files stored under the WCS cache directory.

ProductDisplay.storeId.25.productId.17140.---.htm

The CacheDelete command allows you to force the cache manager to invalidate
and delete cached files on request. The command is flexible, as you can use it to
delete all the files for an entire store, down to specific product and category
pages. For more information on the CacheDelete command, refer to the
WebSphere Commerce Suite online help.
32 WCS V5.1 Performance Tuning

3.1.4 Cache invalidation triggers
WCS maintains a CACHLOG table that records when product or category
information is changed in the database. Several tables populate the CACHLOG
table using DB2 triggers. The cache uses triggers as a notification mechanism to
indicate when an object is invalidated.

The cache invalidation triggers work with the cache cleanup worker. These
triggers are activated when changes are made to the tables that manage
products and categories. When a change is detected, the triggers add a row to
the CACHLOG table, which causes the cache manager to invalidate the relevant
page. This makes cache management a lot simpler. The triggers are enabled
and disabled in the WebSphere Commerce Suite configuration manager.

However, updating the CACHLOG table could be sometimes consume
considerable amount of system resources. If your product and category
information is changing constantly, enabling triggers will increase database
activity, which can result in performance problems. If this is the case, you should
consider either tuning the parameters related with cache tables in the database
to achieve better performance, or disabling cache invalidation triggers then
deleting cache files from the file system when the product and category data is
changed. To disable the triggers, uncheck the Auto Page Invalidation box in WCS
configuration manager. Deleting files directly from the cache, either with a
custom script or the CacheDelete command, would eliminate the extra database
activity caused by updating the cache as well as updating the product and
category data.

If you are going to use the WebSphere Commerce Suite loader facility to make a
large update to your site, then it is worth disabling the triggers before you run the
update, and then enabling them after the batch update has run. If the triggers are
not disabled, then the extra database activity will slow down the update process
and your site at the same time. Once the update has been completed, use the
CacheDelete command to clear out the cache.

We recommend that you use the triggers if you make small or infrequent changes
to your product and category data. If you are making constant updates,
especially during periods of high load, or are running large batch updates to your
data, then it is better to use the CacheDelete command or manually delete the
cache files to refresh the cache.
 Chapter 3. Tuning WCS instance 33

3.1.5 MaxObjectsPerMember
The MaxObjectsPerMember defines the total number of files allowed in the
cache. If this command is set to 0, then the cache can contain an unlimited
number of files. Setting the value to 0 reduces the amount of work the cache
manager has to do. This is because the cache manager does not have to keep
deleting old files when it needs to store new pages. Letting the cache manager
do housekeeping work may unnecessarily increase both CPU usage and the
frequency of disk I/Os. We recommend to set this parameter to an unlimited
number of objects in the cache to improve performance.

3.1.6 CacheFilePath
The CacheFilePath tells the cache where to store the pages on the server. By
default it is set to <WCS_install_path>/instances/<instance_name>/cache. To
minimize any disk I/O contention, we recommend the cache files be located on a
dedicated disk. The disk should be the fastest disk available. When the system
shows heavy I/O to the WCS cache directory, consider adding more disk drives
to the filesystem containing the cache directory and striping the cache files.
According to IBM’s internal tests, it could bring a significant performance boost. It
is important to make the I/O as fast as possible, as caching gives one of the
largest performance gains of all the tuning options.

3.2 Session independent vs. session dependent cache
The session dependency can be set per command cached. For example, you
may set the CategoryDisplay command to be session independent, but the
ProductDisplay command to be session dependent. How you configure this
depends on the level of personalization in your application. This in turn affects
the performance gain you can achieve with WebSphere Commerce Suite
caching.

To set session dependent cache per command, edit
<WCS_install_directory>/instances/<instance_name>/xml/<instance_name>xml
as shown in Example 3-2.

Example 3-2 Setting session dependent cache per command

<CacheableURL name="CategoryDisplay" sessionDependent="false">
 <KeySet name="Key Set #4" HashKey="categoryId" MemberKey="storeId" />
 <KeySet name="Key Set #5" HashKey="identifier" MemberKey="storeId" />
 </CacheableURL>
 <CacheableURL name="ProductDisplay" sessionDependent="true">
 <KeySet name="Key Set #6" HashKey="productId" MemberKey="storeId" />
 <KeySet name="Key Set #7" HashKey="partNumber" MemberKey="storeId" />
34 WCS V5.1 Performance Tuning

 </CacheableURL>

You can also use WCS configuration manager to do the same job.

3.3 Caching custom WCS commands
When you customize WebSphere Commerce Suite, you may create new
commands that are frequently used. If it is appropriate to do so, there are
significant performance gains to be made by caching these commands.

3.3.1 Adding custom pages to WebSphere Commerce Suite cache
Once you have created your custom command, you need to configure
WebSphere Commerce Suite to cache the pages generated by the command. In
order for a command to be cacheable, the HTML result of that command must
not vary for different users viewing the same command with the same
parameters. To configure caching of a custom command, you need to do the
following things:

1. Invoke the WebSphere Commerce Suite configuration manager.

2. Expand the list, and select Caching Subsystem for your instance.

3. From the menu, choose Action -> Add a command to cache.

This opens the Cache Wizard, which takes you through the steps of adding a
new URL to the cache. As an exercise, we will add a fictitious URL called
TrouserDisplay. This command has the same attributes as ProductDisplay, as
well as a new attribute called Color.

1. First, you need to enter the URL to be cached, and the number of keys.
Figure 3-2 on page 36 shows the values used for the new command.
 Chapter 3. Tuning WCS instance 35

Figure 3-2 Adding a new URL to the WebSphere Commerce Suite cache

2. The next step is to define the keys for the command. These are used by the
cache manager to determine if the page is unique or not. If these are not
configured correctly, then the user could be shown the wrong page.
Figure 3-3, Figure 3-4 on page 37, and Figure 3-5 on page 37 show the steps
involved.

Figure 3-3 Assigning a value to Key Set #1

Clicking the Key Set #2 tab will give you the following dialog screen in
Figure 3-4 on page 37.
36 WCS V5.1 Performance Tuning

Figure 3-4 Assigning a value to Key Set #2

Finally, click the Key Set #3 tab and fill in the table as shown in Figure 3-5.

Figure 3-5 Assigning a value to Key Set #3

3. Once the parameters have been assigned, click the Next button. It is then
necessary to define the memberId key for the partNumber parameter.
Figure 3-6 on page 38 demonstrates this.
 Chapter 3. Tuning WCS instance 37

Figure 3-6 Assigning the memberId key

4. This completes the process. Click the Finish button. You should see a
completion message.

5. Your new command should now be cached by the WebSphere Commerce
Suite cache. In order for the change to become effective, you need to restart
the HTTP server. You also need to restart the WCS server from the
WebSphere Application Server (WAS) Administrative Console.

This data is stored in the <instance_name>.xml file in your instance directory. It is
possible to modify this file manually, but we recommend that you use the
WebSphere Commerce Suite configuration manager to make changes.

3.3.2 Checking that the cache is working with your new settings
After enabling cache for a custom command, verify whether caching works
correctly. For this purpose you can use the cache trace facility provided in
WebSphere Commerce Suite. This enables you to view debugging information
generated by the caching system. You can use this to check whether your
custom commands are being cached.

To enable the cache trace, you must run the following commands:

1. Stop the HTTP server using:

cd /usr/HTTPServer/bin

./apachectl stop

2. Set the WCS_CACHE_PLUGIN environment variable using:

export WCS_CACHE_PLUGIN=/tmp/<your_filename.log>

AIX systems
only
38 WCS V5.1 Performance Tuning

3. Set read and write permissions on the log file using:

chmod 777 /tmp/<your_filename.log>

4. Restart the HTTP server using:

./apachectl start

To stop the cache logging, stop the HTTP server and then restart it from a
session where the environment variable has not been set.

The output of the log should look something like Example 3-3. This example
shows what you would expect to see if the TrouserDisplay command was being
successfully cached.

Example 3-3 Output from cache trace file.

>nc_handle_request
iPPath /webapp/wcs/stores/servlet/TrouserDisplay
>WASInterface::handleRequest
>CachePluginControl::getUniqueInstance
<CachePluginControl::getUniqueInstance
>CachePluginControl::executeGetRequest
>CachePluginControl::isCmdCacheable
>WASInterface::getInstanceInfo
iDocumentRoot /usr/HTTPServer/htdocs/en_US
searching for /usr/HTTPServer/htdocs/en_US instance
<WASInterface::getInstanceInfo
iPPath /webapp/wcs/stores/servlet/TrouserDisplay
>WASInterface::getInstanceInfo
<WASInterface::getInstanceInfo
iPathInfo /TrouserDisplay
<CachePluginControl::isCmdCacheable
CachePluginControl - command is cacheable
iQueryString catalogId=1&storeId=1&langId=-1&color=black
iPathInfo /TrouserDisplay
>WASInterface::getInstanceInfo
<WASInterface::getInstanceInfo
>ConnectionPool::get
<ConnectionPool::get
CachePluginControl - Sending request message
CachePluginControl - Getting response message
Message - Read 931 bytes from server
Message - length of message is 931
<Message::Message(Connection)

Note: The cache writes to the log file each time the cache is used, which can
cause the file to grow rapidly if left unchecked.
 Chapter 3. Tuning WCS instance 39

>WASInterface::sendResponse<WASInterface::sendResponse
CachePluginControl - Returning connection to pool
CachePluginControl - CACHE HIT
<nc_handle_request

The output shows the checks the cache manager performs to verify that the
command is cacheable, and if so, to check the cache and return the cached
page. If you see CachePluginControl - CACHE HIT in the output, then your
command has been served from the cache.

3.4 Optimizing cache performance
To optimize the performance of the cache, do the following after launching WCS:

� If Multi-lingual or multi-currency or member group-specific display pages are
not going to be used, ensure that the field Multicurrency, multilingual, or
command key dependent is not checked (Figure 3-7).

Figure 3-7 Deselecting Multicurrency, multilingual support of cache manager
40 WCS V5.1 Performance Tuning

� Ensure directories contain less than 1,000 files. This number has to be
manually calculated by dividing Maximum objects per member by Cache
directories per member. For example, if you expect one store to have 50,000
files, you will need 50 cache directories (dividing 50,000 by 1,000) to store
less than 1,000 files in each directory. Set the value of the Cache directories
per member field appropriately.

� If pages do not need to be automatically removed from the cache, ensure that
the Auto Page Invalidation box is not checked.

� If any number of files can be in the cache, set the Max Objects Per Member
field to 0. This allows unlimited number of objects in the cache.

� After making changes in the cache manager, be sure to stop and re-start the
WCS instance from the WebSphere Application Server Administrative
Console. Also, stop and re-start the Web server.

3.5 Setting up caching in 3-tier topology
In a 3-tier toplogy scenario, the web server is running on a machine separate
from the WAS machine. To serve requests for cached data, WCS manages the
cache daemon and cache client. The cache client can be run on either the WAS
machine or the web server machine. Running the WCS cache client on the web
server provides the advantages of serving requests for the cached files faster
and consuming less system resource. The following instruction shows how to set
up a Web server cache client on the web server machine.

Do the following steps to set up the cache daemon so that requests are made
directly from a Web server cache client on your Web server machine to a cache
daemon running on your WebSphere Application Server machine.

1. Launch WCS Configuration Manager, and check whether the cache has been
enabled as described in Section 3.1.1, “Enabling Cache” on page 30.

2. Change the Cleanup Agent Hostname to the remote Web server hostname
(Figure 3-8 on page 42).

Note: Setting up the Web server cache is only necessary if one or more of
your cacheable Web addresses are session independent. If all of your
cacheable Web addresses are session dependent, skip this section.

AIX only!
For NT, refer to
documentation
for NT
 Chapter 3. Tuning WCS instance 41

Figure 3-8 Adjusting cache manager for 3-tier configuration

3. Specify your WebSphere Application Server machine in the Cache daemon
port address field.

4. Click Advanced. Deselect the check boxes under Session Dependent
column for:

– Store Catalog Display

– Top Categories Display

– Category Display

– Product Display

Click Apply (Figure 3-9 on page 43).
42 WCS V5.1 Performance Tuning

Figure 3-9 Disabling session-dependent cache

5. Copy the wcs_instances file in the <WCS_install_path>/instances directory of
the WAS machine to the web server machine. You need to manually create a
<WCS_install_path>/instances directory on the web server machine.

6. Copy the <instance_name>.xml file from the
<WCS_install_path>/instances/<instance_name>/xml directory of the WAS
machine to the same path on your remote web server machine. Note that you
may need to create this directory on the web server machine.

7. Copy the following files from the<WCS_install_path>/bin directory on the
WAS machine to the same directory on the web server machine. You may
need to create this directory on the web server machine.

– lib51cache.a

– libicu-uc.a

– libicudata.a

– libxerces-c1_3.a

8. Create soft links from the /usr/lib directory to these files as follows:

ln -s <WCS_install_path>/bin/lib51cache.a /usr/lib/lib51cache.a
ln -s <WCS_install_path>/bin/libicu-uc.a /usr/lib/libicu-uc.a
ln -s <WCS_install_path>/bin/libicudata.a /usr/lib/libicudata.a
ln -s <WCS_install_path>/bin/libxerces-c1_3.a /usr/lib/libxerces-c1_3.a
 Chapter 3. Tuning WCS instance 43

9. Open the bootstrap.properties file in the <WAS_install_path>/properties
directory on the web server machine and add the following to the end of the
file:

cache.lib=<WCS_install_path>/bin/lib51cache.a

10.By default, WebSphere Application Server communicates with the Web
server over port 80 and port 16999. Thus, if you have a firewall installed
between these machines, you need to ensure that communication using
these ports is open between WebSphere Application Server and the Web
server. Cache files are stored by WebSphere Application Server in the
directory or directories specified in CacheFilePath on the WAS machine.

For additional related information on caching, see the Section “Maintain the
cache” in the Commerce Suite 5.1 online help.

3.6 Job scheduler
The job scheduler is a component of a WebSphere Commerce Server primarily
used to schedule and launch jobs based on a timing scheme. Each scheduled
job runs as a separate thread, and multiple jobs can be scheduled to run
simultaneously. A job is a Commerce Suite command scheduled to run at a
specified time or interval. Timing is specified in the AddJob command’s start and
interval parameters for job execution. Job tracking information, including the job
start time, end time, and results, are maintained in the database.

It is better for performance to use job scheduler on limited basis. To turn off job
scheduler, change
<WCS_install_path>/instances/<instance_name>/xml/<instance_name>.xml as
follows.

<component compClassName="com.ibm.commerce.scheduler.SchedulerComm"
enable="false">

Job scheduler can be used in the following cases.

� When using IBM Payment Manager

� When running an auction

Note: In this instance, you may ignore the note at the top of the
bootstrap.properties file saying that all properties in the file must start
with “server.”or “ose.”
44 WCS V5.1 Performance Tuning

� When the site administrator is making changes to the system under a cloned
environment

In other cases use of job scheduler is not recommended.

The CleanJob command removes jobs from the WebSphere Commerce Suite job
scheduler status table based on time stamp or job reference number. Under
heavy scheduler use, the scheduler status table grows tremendously large, so
you can use this command to trim its size. The following example cleans all jobs
that are scheduled to be completed before a given time by deleting specified
entries from the job scheduler status table.

http://<myhostname>/webapp/wcs/stores/servlet/CleanJobendTime=2001:10:0
5:15:29:06&URL=basemall.jsp

You can add the auto clean job to the scheduler, which cleans up jobs from the
job scheduler status table based on time stamp or job reference number.

For more information on job scheduler commands, refer to WCS on-line help or
the IBM WebSphere CommerceSuite Site Administrator Guide.
 Chapter 3. Tuning WCS instance 45

46 WCS V5.1 Performance Tuning

Chapter 4. Database tuning

The heart of an enterprise application is encapsulated in the business
information stored within the enterprises database servers. In general, the speed
at which the process of data storage and retrieval occurs invariably impacts the
overall performance of the enterprise application.

In this chapter we will discuss a variety of recommendations designed to improve
the performance of a database subsystem, with specific focus on enhancements
to IBM WebSphere CommerceSuite Version 5.1 running against IBM DB2 UDB
Version 7.1.

The topics discussed in this chapter are:

� Distribution of WebSphere database components in order to avoid issues of
resource contention

� The effect of disk striping in the I/O performance of the database

� How changes in the database manager and database configurations can be
used to improve performance

� The use of database maintenance utilities to improve database access times

� Use of database tools for determining the processing expense of application
SQL queries against the database

4

© Copyright IBM Corp. 2001 47

4.1 WebSphere Database Distribution
WebSphere Commerce Suite maintains several databases; both WAS and WCS
have their own databases, and if session information needs to be persisted to
database, another database is added to the scheme. Two big questions can be
raised here. First, should all the databases reside on a single machine or should
they be on separate machines? Second, what are the tuning points unique to
each database? In this section, we will study the characteristics of each
database required by WCS and the corresponding tuning techniques.

4.1.1 WAS Administration Database
WebSphere Application Server maintains configuration data in a persistent store
whose contents are loaded into memory when WebSphere Application Server is
initially invoked, and when updates are made to the configuration data by an
administrator.

The database can be located either on the same host where WebSphere
Application Server is currently executing, or on a remote dedicated database
server. In most cases, we recommend you install the WAS Administrative
database on the same machine where the WebSphere Commerce Suite
database has been installed. This makes it easier to maintain and backup
processing tasks for site administrators, and makes the server fail-over feature
possible.

The WebSphere Application Server Administrative database does not participate
in the storage of enterprise data, and therefore does not experience the same
volume of intensive database query activity as seen with the WebSphere
Commerce Suite database. The only caveat to this statement is the extent of
event logging configured by an administrator, as discussed in Section “Serious
Event reporting” on page 116. The level of additionally administrative transaction
queries against the database will increase significantly relative to trace level
settings, which range from normal to full debug.

The majority of the techniques used to tune the WebSphere Application Server
Administrative database are not specifically pertinent to tuning DB2, but rather
reflect configuration changes within the WebSphere Application Server itself
such as DataSource, connection pool, creation of models and clones, adding
virtual hosts, and so on.
48 WCS V5.1 Performance Tuning

To use the clustering feature of WebSphere Application Server, the administrator
has to enable multiple clones to share a common administrative repository
database. This allows access to the same application configuration information
for all application server clones participating in the cluster. Therefore, if horizontal
cloning is used as a scaling option with clones distributed across a number of
physical hosts, you need to relocate the administrative server to a centralized
database server.

The distribution of the WebSphere Application Server Administration database
also becomes an important consideration if CPU resource contention on the
WebSphere Application Server host becomes an issue.

Creating a Remote WAS Administration Database
When creating a remotely distributed WebSphere Application Server
Administration database, the list of information in Table 4-1 should be collected
prior to the start of installation process.

Table 4-1 Database client/server configuration checkpoints

On a server hosting a WebSphere Application Server installation, follow the
installation guide for installing DB2 client services, IBM HTTP Server (IHS), and
the WebSphere Application Server application with the applicable FixPaks and
efixes.

Collected Data Collection Procedure

DB2 server hostname Execute hostname on the DB2 server

TCP service port for remote
DB2 clients to connect to a
DB2 instance on the server

Use a text editor to open the /etc/services file on the
DB2 server and look for the entry of the form:

db2cdb2inst1 50000/tcp # Connection port
for DB2 instance db2inst1

where port 5000 is the default DB2 installation value

DB2 Instance owner user id
that is needed to log on to the
server and connect to the
database instance.

Provided by DBA or site administrator

DB2 Instance owner
password is the password
that the database owner
needs to log on to the server
and connect to the instance.

Provided by DBA or site administrator

Only on AIX.
For NT, see
DB2 for NT
documentation
 Chapter 4. Database tuning 49

In the creation of a remote WAS administration database, the DB2 client
application records the identity of the remote server and the service port required
to connect to the DB2 instance running on a remote machine. This is done by
creating a catalog entry on the client machine with the following command:

db2 catalog tcpip node <node name> remote <hostname> server <port value>

The client must then attach itself to the remote server by the host alias node
name assigned in the above command, by executing the command:

db2 attach to <node name> user <db2 instance userid> using <db2 instance
password>

Once the client has successfully attached to the remote server, the WAS
administration database is created by executing the following commands on the
DB2 client workstation:

db2 create database was user <db2 instance userid> using <db2 instance
password>

db2 update db cfg for was using applheapsz 256

db2stop

Important: If installing IHS as your websever, ensure that the directives for
SSL are enabled (as discussed in the Chapter 22: Enabling SSL for
Production with HTTP Server, in the AIX version of the WCS Version 5.1
installation guide) prior to installation of WebSphere Application Server.

This avoids various manual updates of the IHS configuration after installation
of WebSphere Application Server.
50 WCS V5.1 Performance Tuning

db2start

The user ID and password for the database are also stored in the admin.config
file with the settings shown in Example 4-1.

Example 4-1 Setting database user and password

com.ibm.ejs.sm.adminServer.dbUser=db2inst1
com.ibm.ejs.sm.adminServer.dbPassword=wcs5test

If you want to move the administrative database to a new database, simply
create the new database, change the install.initial.config to true (so the tables will
be created), and change the URL of the database in the admin.config file to point
to the new database. This is especially useful in test environments where you
can try different configurations by switching the administrative repository. The
value for dbUrl should match the database alias name defined on the database
server machine. The database alias name can be found by:

$ db list db directory
Database 1 entry:
Database alias = WAS_REMOTE
Database name = WAS_REMOTE
Node name = ITSODB
Database release level = 9.00
Comment =
Directory entry type = Remote

Important:

Ensure the database has been created successfully by connecting to the
database from the client by issuing the following command, and ensure the
response looks similar to the following. Be sure to enter the db2 instance
owner id and its password.

$ db2 connect to was using <db2_instatnce_owner_id> using
<db2_instance_owner_password>

Database Connection Information

 Database server = DB2/6000 7.1.0

 SQL authorization ID = DB2INST1

 Local database alias = WAS
 Chapter 4. Database tuning 51

Catalog node number = -1

Example 4-2 shows how to do this in admin.config file.

Example 4-2 Setting WAS admin database name

com.ibm.ejs.sm.adminServer.dbUrl=jdbc:db2:was_remote

Tuning serious event reporting interval
The WAS Administrative database stores event logs as well as configurations.
The same event log appears in the bottom pane of the Administrative Console.
Event information is also stored in standard output files such as
default_server_stdout.log and default_server_stderr.log under the
<was_root>/logs directory.

The Serious Event listener is a lightweight background thread that runs every 10
seconds by default, polling the administrative database for changes in the
configuration or runtime state. The listener executes select statements and
stores them in the administrative database. By default, a database select is
issued to the administrative database for each type of event (fatal, warning
audit). Any events returned as a result are reported in the Console Messages
section of the Administration Client. While it is not a significant use of resources,
the Serious Event listener thread can be tuned to execute at a desired time
interval. For details on how to adjust this parameter, refer to Section “Serious
Event reporting” on page 116.

4.1.2 WAS persistent session management database
WebSphere Commerce Suite has the option of persisting user ID or object
information by use of its own cookies, or alternatively using the session
persistence services provided by WebSphere Application Server.

WebSphere Application Server persistent objects are serializable and are written
to a dedicated database located on the same machine where WebSphere
Application Server is running, or on a dedicated remote database server.

As discussed in Section 4.1.1, “WAS Administration Database” on page 48, the
number of queries executed against the WebSphere Application Server session
database is small relative to the number of queries against the WebSphere
Commerce Suite database. This is because database access is only necessary if
the WebSphere Application Server receives a request that has an associated
session identifier not already held in memory.
52 WCS V5.1 Performance Tuning

The requirement for session persistence in the deployment of application server
clustering dictates the deployment to a centralized database server. This is
required because all application servers must have access to the same state
information relative to servicing user transaction requests entering the domain.
This subsequently facilitates the ability of all application server clones to actively
participate in the cluster.

In light of the above observations, the primary tuning area for the WebSphere
Application Server session database is the configuration of the DataSource and
database connection pools as illustrated in Section 5.1.2, “Queue settings in
WebSphere” on page 79.

In creating a linkage to the database to store session persistence information,
the persistence type should be set to directtodb. This option instructs
WebSphere to use container managed database access methods (provided by
the WebSphere Web Container), as opposed to database access methods from
a non-IBM custom EJB. This option utilizes the techniques developed to optimize
the performance WebSphere Application Server’s database access methods.

Figure 4-1 on page 54 shows the console screen for enabling persistent
sessions.
 Chapter 4. Database tuning 53

Figure 4-1 Enabling container managed session persistence

4.1.3 WebSphere Commerce Suite Database
The WebSphere Commerce Suite database encapsulates both the enterprise
model data and the commerce application command set used in processing the
information stored. Because the bulk of transaction activities occurring within a
WebSphere Commerce Suite will be against this particular database, appropriate
consideration is required in deciding where and how the database will be
deployed.

WebSphere Commerce Suite provides the option of using a database located on
the same host as the WebSphere Commerce Suite engine, or on a dedicated
remote server. Multi-tier topology with a dedicated database server machine is
usually preferred because it provides better scalability.
54 WCS V5.1 Performance Tuning

In terms of how the database is deployed, the important criteria to note is that
WebSphere Commerce Suite is an online transaction processing (OLTP)
application (that is, a high percentage of small transaction queries as opposed to
a DSS application executing a number of long running transaction queries), and
therefore tuning recommendations for a DB2 database deployment are based on
that characteristic.

4.2 Planning for database layout
The WebSphere Commerce Suite database server requires sufficient raw
processing power to handle many concurrent transaction requests and
responses for a variety of workloads in a timely manner.

The following minimum hardware recommendations for a database server are
presented as base reference points for medium to large site installations
supporting WebSphere Commerce Suite sites:

� Processor - 4-way, 500 Mhz

� Memory - 512 MB per processor

� Disk - 4-10 drives per processor

� A separate set of dedicated (mirrored) disks (which should be as fast as
possible) for storing database logs

As indicated in the above list, a minimum of a 4-way processor configuration that
is at least 500 MHz per processor is highly recommended. Testing of single and
two tier configurations with smaller processor speeds has resulted in very high
CPU utilization rates (greater than 80%) in a number of internal test scenarios.

A high degree of contention for processor cycles amongst DB2 and other running
processes on the server invariably impacts the ability of DB2 to turn around
transaction requests quickly. This ultimately degrades the perceived response
time performance by shoppers to the web site(s) supported by the WebSphere
Commerce Suite database server.

Attention: The addition of more processors should be implemented with
respect to determining the current CPU utilization (see Section “CPU tuning”
on page 157 for CPU monitoring tools), ensuring that additional CPU
resources will not be underutilized based on current resource consumption.
 Chapter 4. Database tuning 55

The memory requirement for a WebSphere Commerce Suite database server is
relative to the current size and estimates on the growth rate of the enterprise
data. As an initial recommendation, a minimum of 512 MB per processor should
be allocated, with the value scaled up accordingly relative to the database sizing
for buffer pool allocation (see Section 4.5, “Adjusting database bufferpool size”
on page 63).

DB2 uses allocated areas of memory, termed a bufferpool, as storage for a
portion or all of the contents of a database table in memory. If a request for row
data is received that cannot be found in the bufferpool, the requested information
is read from disk into memory as a data block at a pre-determined size defined
for the table space.

A container is a physical storage entity that can either be associated with a
collection of files and directories (that is, System Managed Space (SMS)), or be
composed of files or raw devices under the control of DB2 (that is, Database
Managed System (DMS)) (see Figure 4-2). The handling of I/O for table space
requests is based on the type of container the database tables are stored in.

Figure 4-2 Table spaces, tables, and containers

Table SpaceTable Space

Table A

Table D

Table B

Table C

RawRaw
DeviceDevice

Containers

/home/db2inst1/db2inst1/NODE0000/SQL00001/SQLT0000.0

/home/db2inst1/db2inst1/NODE0000/SQL00001/SQLT0005.0

/home/db2inst1/db2inst1/NODE0000/SQL00001/SQLT0049.0
56 WCS V5.1 Performance Tuning

When DB2 creates a database instance using ‘db2 create database <dbname>’
command, a default set of SMS table spaces are created as follows:

– SYSCATSPACE: Holds information on all system catalog tables that
provide details on tables and indexes created in addition to tables
statistics, etc.

– TEMPSPACE1: Used as a ‘scratch pad’ area for temporary tables created
during the execution of queries and may involve joins of different tables in
creating the result set to be sent back in the query response.

– USERSPACE1: Contains the user application tables, which in the case of
WebSphere Commerce Suite is where both the Commerce engine specific
and user custom tables reside.

Using SMS tablespaces makes database administration work easier, as table
space creation is far easier in SMS configuration than in DMS configuration.
Furthermore, allocation of additional container spaces is also more easily
handled by the file system.The downside is that all direct access to tables are
handle by the file system, introducing an additional overhead to DB2 read/write
requests.

The overhead is removed using DMS table spaces that use raw devices as
opposed to file system based containers (see the following note). DB2 directly
handles I/O with the raw devices, which can realize significant performance
gains relative to a similarly configured SMS container-based system for large
volume of transactions.

Internal testing on a 2-tiered system for small workload sizes (i.e. approximately
750 transactions/min), the performance for SMS and DMS configuration was
comparable in terms of throughput. However, as workload increase, having
better I/O distribution and faster access to data from DMS supported tablespaces
will allow greater performance gains to be realized.

It should be pointed out that SMS provides easier manageability because it
allows you to use available Operating System tools for container management.
The decision point relative to performance against manageability is left up to the
reader to decide.

Note: File based DMS containers have file system caching controlled by the
operating system and not DB2. This incurs a performance penalty relative to
the same container composed of raw devices where caching is handled by
DB2 directly.
 Chapter 4. Database tuning 57

4.2.1 Recommendations for tablespace layout
The following recommendations for a tablespace layout of a WCS database are
based on performance recommendations from DB2 UDB V7.1 Performance
Tuning Guide, SG24-6012, and information gathered from IBM’s engagement
experience in WCS projects. By default, all the WCS tables are created in USER
tablespace and we will take the default in the following example. If you want to
change the location where the WCS tables will be placed, edit the script in
Example 4-3 on page 60.

� Leave the SYSCATSPACE and TEMPSPACE1 as SMS tablespaces.

� Create TEMPSPACE1 container(s) on separate dedicated physical drives.

� Layout USERSPACE1 across as many DMS raw containers as are available
(i.e. 4-10 physical drives per CPU), with one container per raw device.

� Database logging is extremely write intensive and database logs should
reside on a separate set of dedicated disks that should be the fastest disks
available instead of residing on the same disk as the db2 instance. This
reduces I/O contention with other DB2 processes and improves the overall
spread of I/O traffic within the system.

� The database logs should also be mirrored on separate dedicated disks to
ensure the database is able to recover from system failure or corruption of the
primary database logs.

The following section provides a practical look on the creation of a database
based a number of the aforementioned recommendations. The steps below
shows how to stripe the tablespaces over multiple disk drives.

XYZ Corporation have purchased an IBM RS/6000 pSeries 680 as a database
server, with 4 x 600Mhz processors, 4GB of memory, and a 16 x 9.1 GB disk
array as part of their infrastructure deployment of a WebSphere Commerce Suite
site.

The assignment of physical volumes (PV’s) and volume groups (VG’s) and logical
volumes (LV’s) proposed are shown in Table 4-2.

Table 4-2 Design of physical layout

Physical
Volume

Volume
Group

Logical
Volume

Tablespace Type Contents

/dev/hdisk0 rootvg N/A Swap space

/dev/hdisk1 rootvg db2instlv SYSCATSPACE1 SMS - ‘/home’ directory for db2
instance
- ‘/xyzsys’ directory to store
SYSCATSPACE1
58 WCS V5.1 Performance Tuning

The following instruction gives an example of the procedure required to create
logical volumes on an AIX system that correspond with the physical layout plan
of the database in Table 4-2.

� Login as root user.

� Add hdisk1 to hdisk5 to rootvg volume group:

extendvg -f roovg hdisk1 hdisk2 hdisk3 hdisk4 hdisk5

� Create the logical volume for the database instance on hdisk1:

mklv -L ‘db2instlv’ -S4K -t ‘jfs’ rootvg 1 hdisk1

� Create a filesystem to hold the database on the logical volume. Allocate 9GB
as the initial size of filesystem. Note 9GB = 17578125 (512 byte-blocks).

crfs -d ‘db2instlv’ -m ‘/xyzsys’ -a size=2250000 -g ‘rootvg’

� Create the logical volume for the database logs on hdisk2 and hdisk3:

mklv -a e -u 2 -L ‘db2loglv’ -S4K -t ‘jfs’ rootvg 1 hdisk2 hdisk3

� Create a filesystem that will hold the database logs on the logical volume,
allocating 18 GB as the initial size of filesystem. Note 2 x 9.1 GB = 35546875
(512 byte-blocks):

crfs -d ‘db2loglv’ -m ‘/xyzlog’ -a size=35546875 -g ‘rootvg’

� Create the logical volume for the db2 TEMPSPACE1 tablespace on hdisk4
and hdisk5:

mklv -L ‘db2templv’ -t ‘jfs’ u 2 -S4K rootvg 1 hdisk4 hdisk5

/dev/hdisk2
/dev/hdisk3

rootvg db2loglv N/A - ‘/xyzlog’ directory to store
logfiles

/dev/hdisk4
/dev/hdisk5

rootvg db2templv TEMPSPACE1 SMS - ‘/xyztemp’ directory to store
TEMPSPACE1

/dev/hdisk6
~
/dev/hdisk15

datavg db2data(x)lv
x = 6 ~ 15

USERSPACE1 DMS XYZ Corporate WCS
Commerce data

Physical
Volume

Volume
Group

Logical
Volume

Tablespace Type Contents

Important: The logical volume for db2 logging has been created with physical
partitions on the outer edge of the physical disk drives with ‘-a e’ parameter, as
DB2 logging is both sequential and write intensive, and this area provides the
highest track density for this type of data transfer.

The following
steps are
applicable only
to AIX.
 Chapter 4. Database tuning 59

� Create a filesystem to hold TEMPSPACE1 on the logical volume, allocating
18GB as the initial size of filesystem:

crfs -d ‘db2templv’ -m ‘/xyztemp’ -a size=35546875 -g ‘rootvg’

� Before the 10 ‘unstructured’ logical volumes for XYZ Corp. data on hdisk6 to
hdisk15 can be created, a new volume group, which will be called
‘db2datavg’, needs to be created:

mkvg -d 10 -y ‘db2datavg’ hdisk6 hdisk7 hisk8 hdisk9 hdisk10 \
hdisk11 hdisk12 hdisk13 hdisk14 hdisk15

� The command for creation of logical volumes for each disk containing original
data will be of the form:

mklv -L <LV name> -t <LV type> datavg

For example, mklv -L ‘db2data8lv’ -t ‘raw’ db2datavg

� Change ownership for the logical volumes to the db2 instance owner; that is,
user id ‘db2inst1’, group id ‘db2iadm1’:

chown -r db2inst1.db2iadm1 /dev/db2*lv

chown -r db2inst1.db2iadm1 /dev/rdb2*lv

� Install DB2. /home/db2inst1 as the database home directory.

� Login as the db2 instance owner and run the Korn shell script shown in
Example 4-3 to create the following tablespaces:

– SYSCATSPACE on ‘/xyzsys’

– TEMPSPACE1 on ‘/xyztemp’

– DB2 logging on ‘/xyzlog’

– USERSPACE1 on the raw logical volumes rdata6lv - rdata15lv

Example 4-3 Sample shell script to create database

#! /bin/ksh

database="XYZDB"

echo "Creating db ${database}..."
db2 "create database ${database} \

catalog tablespace managed by system using (‘/xyzsys’) \
temporary tablespace managed by system using (‘/xyztemp’) \
user tablespace managed by database using \

(DEVICE '/dev/rdb2data6lv' 2250000, \
 DEVICE '/dev/rdb2data7lv' 2250000, \

 DEVICE '/dev/rdb2data8lv ' 2250000, \
 DEVICE '/dev/rdb2data9lv' 2250000, \
 DEVICE '/dev/rdb2data10lv' 2250000, \
60 WCS V5.1 Performance Tuning

 DEVICE '/dev/rdb2data11lv' 2250000, \
 DEVICE '/dev/rdb2data12lv' 2250000, \
 DEVICE '/dev/rdb2data13lv’ 2250000, \

 DEVICE '/dev/rdb2data14lv' 2250000, \
 DEVICE '/dev/rdb2data15lv' 2250000)”

echo "Database ${database} tablespaces created successfully"
echo
echo “Changing the DB2 logging path”
db2 “update db cfg for ${database} using NEWLOGPATH ‘/xyzlog’”
echo "Disconnecting from database ${database}"
db2 "disconnect ${database}"
db2stop
db2start
echo "Done ...

4.3 Improving performance by data striping
The distribution of data across a collection of disks greatly reduces the possibility
of I/O bottleneck occurring on a given disk. A high volume of I/O requests for
data on a specific disk on a non-distributed system will invariably lower the
overall performance of the database server.

Data striping can be implemented at the operating system level, hardware level
using RAID technology, or by manually distributing the data across disks. As
discussed in “Recommendations for tablespace layout” on page 58, DMS
tablespaces using raw devices as containers provide a performance gain relative
to similar sized SMS tablespaces, as disk I/O is handled directly by DB2 and not
the file system.

DB2 can stripe data across a set of containers for a DMS tablespace and provide
‘off-by-N’ mirroring scheme (see note below), using the AIX’s LVM.
 Chapter 4. Database tuning 61

In addition, implementing RAID on top of a DB2 database disk array introduces
the following drawbacks:

� RAID takes away the database server’s ability to parallelize its I/O across
multiple containers, resulting in poorer I/O performance.

� DB2 uses direct I/O for writes and RAID creates another layer, which
increases the processing time required for each write.

� Having access to multiple containers provides the DB2 with the option of
reading from the fastest path.

4.4 Separate tablespace for indexes
Under heavy workload, it is often preferable to assign a separate tablespace to
indexes. One of the main reasons for separating your indexes from the data by
placing them in a separate table space is that you may wish to place them on
faster devices or allocate them their own buffer pool. Note that using DMS does
not separate data and indexes into different table spaces unless you do so
specifically to assign them to different buffer pools. If you need to ensure that

Note: The ‘off-by-N’ mirroring scheme locates the mirrored copy of the original
data for a disk on a portion of another data disk in the array. Each disk in the
array will have its own mirrored copy on another disk, ensuring that all original
versions of data have a mirrored copy residing on another disk in the array.

The N factor is the offset value for disk location of the mirrored copy relative to
the disk where the original data resides. As an example, if N = 2, then for a 4
disk array the arrangement would be as follows:

– disk1: Data + Mirror for disk3

– disk2: Data + Mirror copy for disk4

– disk3: Data + Mirror copy for disk1

– disk4: Data + Mirror copy for disk2

Deployment of ‘off-by-N’ mirroring requires use of map files to specify the
exact mapping of physical volumes areas to logical volumes, in addition to the
mklvcopy command for placement of mirrored copies.

‘off-by-N’ mirroring provides a less expensive alternative to having a separate
dedicated disk for each mirrored copy.

What is Map
File?
Ascii text file
that allows the
specification of
exactly which
PV and PP’s
are mapped to
an LV.
62 WCS V5.1 Performance Tuning

certain indexes always remain in memory, then that would be a valid reason to
move the indexes to their own table space and assign that table space its own
buffer pool. Make sure you have sufficient disk I/O bandwidth to cope with this
setup.

4.5 Adjusting database bufferpool size
The database bufferpool provides memory space for holding a portion of the
database in memory. It allows faster data access to the same data obtained from
disk because it does not require I/O to physical disks.

However, allocating a sizeable portion of memory to the database bufferpool has
to be weighed against the amount of memory available for both database and
other processes running on the server. If insufficient memory is available for
executing processes, the operating system has to compensate by swapping the
required pages to and from disk, with the I/O involved offsetting any performance
gain by the increased bufferpool size.

You can check whether the current bufferpool size is adequate by measuring the
‘bufferpool hit ratio’, which is the ratio of accesses to the bufferpool relative to
accesses to data on disks. For OLTP applications such as WebSphere
Commerce Suite, this percentage should be fairly high - in the region of 95 to 99
per cent.

How is the bufferpool hit ratio determined? The following steps describe the
procedure needed for extracting this value for a database system:

� Obtain snapshots of buffer pool activity as transactions are executed against
the database. Example 4-4 is a Korn shell script that could be used in testing
by modifying the highlighted entries as necessary (ensure that the db2
instance owner has permissions to execute this script):

Example 4-4 Shell Script for Capturing Bufferpool Snapshot Data

#!/bin/ksh
#--------------------------------------
db2 snapshot monitor script - 04/10/01
#--------------------------------------

Change to the name of your database - this example uses ‘mall’
database="mall”

Change total monitoring time and snapshot intervals to
accommodate your test
requirements -
#

Valid only for
AIX!
 Chapter 4. Database tuning 63

This example tests every 5 secs for 15 minutes of \
transactionactivity
15 x 60 = 900
typeset -i snapshot_count=0
typeset -i snapshot_interval=0

while (($snapshot_interval < 900))
do

echo "Connecting to the ${database} database"
db2 connect to ${database}

Setup the database monitor switches
echo "Creating the database monitor switches"
db2 "update monitor switches using bufferpool on"

Now collect the database snapshot and put into timestamp \
file

echo "Collecting snaphot data"
echo
db2 "get snapshot for all on ${database}" > snapshot-‘date | \

awk ‘{print $4}’‘

turn off database monitoring
echo "Switching off monitor switches"
echo
db2 "update monitor switches using bufferpool off"

Disconnecting from database
echo "Disconnecting from the database"
echo
db2 disconnect ${database}

((snapshot_interval += 5))
((snapshot_count += 1))
echo "Number of database snapshots taken = ${snapshot_count}"
echo “Snaphot interval = ${snaphot_interval}"

Wait for an interval of five seconds before collecting the next
snapshot

echo
echo "Sleeping for 5 seconds......"
sleep 5

done
echo
echo "Done....."
exit 0
64 WCS V5.1 Performance Tuning

� If the above script is used, time-stamped data collection files are created for
each 15 second interval. The script should be invoked as the db2 instance
owner by the command ./dbsnapshot.sh

� From the list of snapshot files, determine the values for both buffer pool
logical and physical reads and writes by issuing the following command:

grep “Buffer pool” snap* | grep read > buffer_pool.out

with the generated output of the form shown in the example snapshot entry:

snapshot-Tue Apr 10 10:49:20 CDT 2001:Buffer pool data logical reads =

snapshot-Tue Apr 10 10:49:20 CDT 2001:Buffer pool data physical reads =

snapshot-Tue Apr 10 10:49:20 CDT 2001:Buffer pool index logical reads =

snapshot-Tue Apr 10 10:49:20 CDT 2001:Buffer pool index physical reads =
....

� From the listings in the buffer_pool.out file (see above highlighted entries),
calculate the bufferpool hit ratio for a snapshot interval using the formula:

1 - {(pool_data_physical_reads + pool_index_physical_reads)
/(pool_data_logical_reads + pool_index_logical_reads)} * 100%

If the bufferpool hit ratio is less than 95%, then calculate the current size of the
database using the following commands:

– db2 list tablespaces show detail

note the Total Pages for SYSCATSPACE, let us say, Ns

– db2 "select sum(npages) from syscat.tables" = Nt

– db2 "select sum(nleaf) from syscat.indexes" = Ni

and calculate the database size as:

 Total Size = ((Nt + Ni) + Ns) x 4096 / (1024)**2 = ... MB (approx).

Based on the memory available on the server and the total size of the database,
the general rule of thumb is to allocate a minimum buffer pool size equal to the
total database size.

Attention: The bufferpool allocation should allow for growth of the Commerce
database and should be revised if new custom tables and indexes are added
to the base schema.
 Chapter 4. Database tuning 65

Otherwise, size to the maximum amount of shared memory, keeping the
following in mind:

� UNIX limits are on total shared segments, which include the utility heap
(20MB), dbheap (20MB each), locklist (16MB), pckcache (26MB),
sortheapthresh, and so on. Inspection of the database and database
manager configurations will assist in determining the current values of these
settings.

� The size of the shared memory segment size (shmmax) parameter may need
to be increased if it is too low. Setting the segment size to 3 - 3.5GB provides
a sufficiently generous ceiling level for the majority of installations.

4.6 Running reorg and runstats
DB2 has two commands for cleaning up and improving database performance,
called runstats and reorg. reorg has an additional command called reorgchk.

We recommend that runstats be run regularly on all the database tables to
optimize database access. The state of the tables should be monitored with
reorgchk regularly. Actual reorganization of tables should not be performed
unless it is perceived to be causing a performance problem. For more detailed
information about these commands, see DB2 UDB Command Reference,
SC01-2951.

While performing our tests, we were unable to record any significant
performance gain between measurements taken before and after the changes.
However, if we had a much larger database, running reorg would have helped
performance to a larger degree.

4.6.1 runstats
runstats updates statistics about physical characteristics of a table and the
associated indexes. These statistics are used by the database optimizer when
calculating access paths to data. This should be performed on tables that have
many updates, and tables that have just been reorganized. To run runstats on a
table, use:

db2 runstats on table <schema.table name> with distribution and
detailed indexes all shrlevel change

This command calculates the most detailed statistics on the table and indexes,
and allows applications to read and write to the table while the command is
running.
66 WCS V5.1 Performance Tuning

We recommend that this command is used regularly on tables with a lot of
updates, as well as tables after large data loads, such as tables associated with
product data. When planning batch jobs to perform runstats, it is important to
research the most commonly updated tables for your WebSphere Commerce
Suite instance. From our testing, we produced Figure 4-3 on page 71, which
shows the most active tables in our test database.

4.6.2 reorg
reorg is used to reorganize tables by eliminating fragmented data, and
compacting data. You have the option of physically ordering the data in the table
by a named index, or simply compacting the data without any reordering. Reorg
requires a temporary space to store the data being reconstructed before it
replaces the existing table. The default is to use the same tablespace as the
table being reconstructed, or you can specify a specific tablespace for the
temporary storage. This is especially important for large tables, as the command
will fail if the temporary table fills the available space. Also, distributing the I/O
over two or more physical devices will accelerate the process.

To find out if your tables need reorganizing, use the reorgchk command.
reorgchk runs several tests against the database tables and their indexes.
Tables failing to meet any one of the test criteria are candidates for
reorganization. reorgchk produces a detailed report showing this information. To
run reorgchk on all the user and system tables:

db2 reorgchk current statistics on table all

Alternatively, you can specify the update flag. This causes runstats to be run on
the database tables before reorgchk determines if tables need reorganizing or
not. To do this you must use this command:

db2 reorgchk update statistics on table all

The advantage of updating the statistics is that the database manager will have
the most up-to-date information for calculating if tables need reorganizing.

Example 4-5 on page 68 is an example of part of the output from reorgchk. In
this case, the results show that the CATENTDESC, CATGPENREL and
SUBORDERS tables should be reorganized. This is indicated by the asterisks in
the right hand column.

Note: Running statistics on many tables can take time, especially if the tables
are large.
 Chapter 4. Database tuning 67

Example 4-5 Sample output of reorgchk

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70
F3: 100 * NPAGES / FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG
--
DB2RT ACCCUSTEXC - - - - - - - - ---
DB2RT ADDRBOOK 15061 0 185 185 737989 0 99 100 ---
DB2RT ADDRESS 25066 43 2441 2441 9424816 0 96 100 ---
DB2RT CATENTDESC 11126 4586 655 1072 4405896 41 100 61 *-*
DB2RT CATENTREL 53 0 2 2 5671 0 100 100 ---
DB2RT CATENTRY 11064 0 460 460 1803432 0 97 100 ---
DB2RT WTAXINFO - - - - - - - - ---
DB2RT ZIPCODE - - - - - - - - ---
--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) / (NLEAF * INDEXPAGESIZE) > 50
F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) *
(INDEXPAGESIZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG
--
Table: DB2RT.ACCCMDGRP
DB2RT P_ACCCMDGRP 881 3 2 4 881 100 86 34 ---
DB2RT UI_ACCCMDGRP 881 22 2 86 881 84 91 4 ---
Table: DB2RT.CATENTDESC
DB2RT P_CATENTRYDESC 11126 62 2 12 11126 99 87 1 ---
able: DB2RT.CATGPENREL
DB2RT P_CATGPENREL 11063 99 3 24 11063 5 87 112 *-*
Table: DB2RT.CATGROUP
DB2RT P_CATGROUP 1013 5 2 8 1013 100 79 22 ---
DB2RT UI_CATGROUP 1013 13 2 38 1013 98 87 7 ---
Table: DB2RT.SUBORDERS
DB2RT I_SUBORDERS1 5583 17 2 13 2205 48 85 6 *--
DB2RT I_SUBORDERS2 5583 26 2 8 5583 98 83 4 ---
DB2RT P_SUBORDERS 5583 25 2 8 5583 99 87 4 ---
--

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) will indicate REORG is necessary
for indexes that are not in the same sequence as the base table. When multiple
indexes are defined on a table, one or more indexes may be flagged as needing
REORG. Specify the most important index for REORG sequencing.
68 WCS V5.1 Performance Tuning

To reorganize a table, use the following commands:

db2 reorg table <schema.table name> index <schema.index name> -use
<tablespace name>

When you have a table with multiple indexes defined, you should use the primary
key index. Once you have reorganized a table, you should use runstats to
update the table statistics.

Reorganizing tables is something that should need to be done infrequently. We
recommend that you use reorgchk regularly to monitor your databases, and take
action if database performance drops as a result of fragmentation. With
WebSphere Commerce Suite, the most likely time you may have to use reorg is
after you have used the database cleanup utility to delete a proportion of some
tables. The more active a table is, the more likely it will become fragmented and
disordered. Figure 4-3 on page 71 provides information on table usage.

4.7 Effect of the database cleanup utility
The database cleanup utility, or dbclean, is provided by WebSphere Commerce
Suite as a flexible way of clearing old data from the database. Removing old and
unused data from the database can improve the performance of the overall
system, especially if there is a large amount of redundant data. Generally
speaking, the more commands and transactions your site performs, the more
often dbclean should be run.

4.7.1 Running dbclean
dbclean is a flexible and extensible tool for cleaning up your database. It allows
you to clean up tables selectively, while maintaining referential integrity of the
database. dbclean can clean in two ways:

� Top down deletes child table rows with a delete cascade.

� If a delete restriction is specified in the referential integrity, then you have to
use the bottom up method. This is where the rows in the child tables are
deleted first, followed by the parent table rows.

The top down method is faster to run. The bottom up method is used when the
referential integrity is set to on delete restrict. This is usually used when the child
data is relied on by more than one parent table.

Important: If dbclean is run infrequently, the dbclean operation may take a
long time to complete and consume a large amount of system resources on
the database server, causing disruption to your service.
 Chapter 4. Database tuning 69

dbclean comes with more than 20 preset cleanup options. These are aimed at
the most commonly used tables. You can define others, either for other
WebSphere Commerce Suite tables, or your own custom application tables.

You need to change user to the DB2 instance owner id to run the command. An
example of running the dbclean application is:

dbclean.sh -table member -type guest_shopper -db mall -days 30
-loglevel 0

This command deletes non-registered shopper records that are not associated
with any orders, and have not been updated for 30 days or more. The member
table grows quickly, as a record is created for each guest shopper when they add
the first item to their shopping basket, and when a user registers.

4.7.2 Identifying most frequently accessed tables
WebSphere Commerce Suite uses some tables more than others. These tables
are the most important to clean up. If there are excessive old rows, the extra data
will reduce the speed of queries against that table. Figure 4-3 on page 71 is the
results of collecting a DB2 snapshot of the WebSphere Commerce Suite
database tables for a 20 minute load test. This test was performed with
WebSphere Commerce Suite caching turned off, which gives us the most
accurate view of the table activity.

This information can be used to help define the most efficient tablespace layout
for your WebSphere Commerce Suite database. Refer to Section 4.2.1,
“Recommendations for tablespace layout” on page 58 for information on how to
define custom tablespaces.

Should you activate other functionalities of WebSphere Commerce Suite such as
the auction component, this will cause more activity on the auction specific
tables.

Note: Is is important to consider carefully which data to delete using dbclean.
This can depend on how long you want to keep data for marketing or fulfilment
purposes that are not directly related to the day to day running of your site.
70 WCS V5.1 Performance Tuning

Figure 4-3 Most frequently accessed tables

ADDRBOOK
ADDRESS
CALCODE

CALMETHOD
CALRANGE

CALRLOOKUP
CALRULE

CALSCALE
CATALOG

CATALOGDSC
CATENTDESC

CATENTRY
CATGPENREL

CATGROUP
CATGRPDESC

CONTRACT
CURFMTDESC

CURFORMAT
DISPCGPREL
DISPENTREL

INVENTORY
KEYS

LANGUAGE
LANGUAGEDS

MEMBER
OFFER

OFFERPRICE
ORDERITEMS

ORDERS
ORDPAYINFO

ORDPAYMTHD
ORDTAX

PAYSYNCH
SCHCONFIG

SETCURR
SHIPMODE

SHPARRANGE
STENCALUSG

STORE
STOREDEF
STOREENT
STOREINV

STORELANG
SUBORDERS
SUBORDTAX
SYSDBAUTH
SYSTABLES

TAXCGRY
TAXTYPE

TEMP (00001,00002)
TEMP (00001,00003)

TRADEPOSCN
USERDEMO
USERPROF

USERREG
USERS

1
10

100
1000

10000
100000

1000000
10000000

100000000

Rows read Rows written
 Chapter 4. Database tuning 71

4.8 Tuning other database parameters
This section covers some general database parameters to tune WebSphere
Commerce Suite. All DB2 configuration parameters can apply to the WebSphere
Commerce Suite’s database, WebSphere Application Server’s administrative
database, and the persistent session database if used. Several of the parameters
may not improve performance significantly unless changed in conjunction with
others. This is especially important for large WebSphere Commerce Suite
database configurations, where there are many concurrent applications
connecting to the database from multiple application servers. Please note that if
you tune the WebSphere Application Server queues to optimize throughput, you
will need to increase some database parameters in order for the changes to be
effective.

These parameters have a lower effect on the overall system performance than
other tuning methods. This is because with WebSphere Commerce Suite 5.1, the
application server consumes more system resources to run than the database
server.

When choosing your own database parameters, it is good practice to load test
your system while collecting database snapshot data. You can use the snapshots
to look for bottlenecks, such as if the database is creating temporary tables that
generate a lot of reads and writes. This implies that there is not enough sort
space available for the database sort. By increasing the sortheap parameter, and
then testing the database again, you can see if this has reduced or eliminated the
temporary table creation.

Table 4-3 shows the parameters we worked with while tuning our application.
Each change was applied one by one to see their incremental effects, and were
changed in the order presented.

Table 4-3 Key parameters used for database tuning

Parameter Default value Tested value

APPLHEAPSZ 128 (4KB pages) changed
to 256 during install

512

PCKCACHESZ 8 * MAXAPPLS. If the
number is less than 32,
then 32 will be the default
value

640

MAXAPPLS 40 80

LOCKLIST 100 (4 KB) 200 (4 KB)

MAXLOCKS 10% 20%
72 WCS V5.1 Performance Tuning

4.8.1 applheapsz
Application heap size defines the number of memory blocks available to the
database manager for processing requests. To update the applheapsz
parameter, use the command:

db2 update db cfg for <database name> using applheapsz <block amount>

The default value is 128, but the WebSphere Commerce Suite install guide tells
you to set the value to 256.

4.8.2 pckcachesz
The package cache is a cache area allocated in database global memory
(applheapsz). The cache stores database access plans in packages. This
reduces the database manager overhead, as it does not have to access the
system catalogs or recompile dynamic SQL. This is especially effective for
queries that are used often. As WebSphere Commerce Suite performs a lot of
repetitive queries, this parameter is important when tuning the application.

To change the package cache size parameter, use the command:

db2 update db cfg for <database name> using pckcachesz <cache size>

The cache size is allocated in 4K segments. By default, the value is set to -1. The
database manager interprets -1 to be 8 times the maximum number of active
applications (maxappls) parameter.

4.8.3 maxappls
This database parameter defines the maximum number of concurrent
applications that can connect to a database. This includes both remote and local
applications. When choosing this parameter, it is important to take the following
into consideration:

a. The application data source maximum connection pool size

b. The session data source maximum connection pool size

c. The number of clone servers

d. Other database connections, for example from the DB2 command line

MAXAGENTS 200 200

Parameter Default value Tested value
 Chapter 4. Database tuning 73

A rough guide for choosing the maxappls value is (a + b) *c + d. Please
remember that if the DataSource Maximum connection pool size is greater than
the value of maxappls, then the database will return SQL Error SQL1040N, and
your application will fail. We recommend to increase maxappls value to 100 or
larger.

To change the maxappls parameter, use the command:

db2 update db cfg for <database name> using maxapplsz <new value>

4.8.4 locklist
locklist defines the memory allocated to the lock list. Locking is the mechanism
that the database manager uses to control concurrent access to data in the
database by multiple applications. Both rows and tables can be locked. When the
percentage of the lock list used by one application reaches maxlocks, the
database manager will perform lock escalation, from row to table, for the locks
held by that application. Locking tables reduces concurrency, and will reduce
database performance for accesses to the affected tables. In addition, lock
escalation occurs when the locklist is full. This could lead to deadlocking, as the
applications are waiting on a limited number of table locks.

To change the locklist parameter, use the command:

db2 update db cfg for <database name> using locklist <new value>

As WebSphere Commerce Suite relies on several key tables, a heavily loaded
system could generate many locks. Therefore, it is worth increasing the locklist
and maxlocks values to avoid potential table locks or deadlocks. It is more likely
that WebSphere Commerce Suite will fill the lock list, rather than an individual
application generate enough locks to cause lock escalation.

4.8.5 maxlocks
The maxlocks parameter defines the percentage of the locklist held by an
application. When the number of locks held by any one application reaches this
value, the database manager will perform lock escalation for the locks held by
that application.

To change the maxlocks parameter, use the command:

db2 update db cfg for <database name> using maxlocks <new value>
74 WCS V5.1 Performance Tuning

4.8.6 maxagents
maxagents is a database manager parameter. It defines the maximum number of
database agents that are available to handle application requests. This
parameter can be useful in memory constrained environments to limit the total
memory usage of the database manager, because each additional agent
requires additional memory. The value of maxagents should be at least the sum
of the values for maxappls in each database allowed to be accessed
concurrently. Remember at least two or more databases are created by default in
WCS. Be aware that each agent takes up some resource overhead.

To change the maxagents parameter, use the command:

db2 update dbm cfg using maxagents <new value>

We did not change this parameter for our tests, as we never reached a level of
system load where more than 200 database connections, and therefore agents,
were required. This parameter becomes more important when you have multiple
application servers, which result in more connections to the database.

Tip: Monitoring Lock Escalation

Use the snapshot command to see if lock escalation has occurred. By
default, locking related information is not monitored. There are two ways to
turn on monitoring for locking information:

Set the DFT_MON_LOCK parameter to ON with the following command:

db2 update dbm cfg using DFT_MON_LOCK ON

Use the update monitor switches command:

db2 update monitor switches using LOCK on

To reset snapshot data, use the following command:

db2 reset monitor all

Use the following commands to connect to the database and take a snapshot
of the lock related information:

db2 connect to <database name>

db2 get snapshot for locks on <database name>
 Chapter 4. Database tuning 75

4.9 Reducing deadlocks
Changing the DB2 registry setting DB2_RR_TO_RS can significantly reduce
deadlocks in your WebSphere Commerce Suite database. Enabling this
parameter forces DB2 to convert all queries using RR (repeatable read) to RS
(read stability). The parameters are two of four possible isolation levels. The
advantage of using read stability is that it generates far fewer locks than
repeatable read. At the same time, it ensures the rows required for the
transaction remain stable by locking them. This improves concurrent database
access, especially on systems where there is a large load on the database.

To change the DB2_RR_TO_RS setting, use the command:

db2set DB2_RR_TO_RS=YES

Once this command has been run, you need to stop and start the database
manager for the changes to take effect.

Important: This setting may not be good for other, non WebSphere
Commerce Suite applications. The DB2_RR_TO_RS parameter is granular
only to the instance level. Should you have application databases that require
repeatable read access to the database, you should use a different DB2
instance for the database.
76 WCS V5.1 Performance Tuning

Chapter 5. Tuning WebSphere
Application Server

In this chapter we introduce the concept of the WebSphere Queuing model and
other performance tuning tips for WebSphere Application Server that you can
follow to enhance the overall performance of the WebSphere Commerce Suite
system. Topics in this chapter include:

� Adjusting queue sizes

� Tuning the Java Virtual Machine (JVM)

� Relaxing auto reloads

� Optimizing logging systems

� Using call-by-reference

� Tuning Enterprise JavaBeans (EJB) container cache

� Effect of using persistent session management vs. WebSphere Commerce
Suite (WCS) sessions

5

© Copyright IBM Corp. 2001 77

5.1 Adjusting queue sizes
WebSphere Application Server maintains a pipeline of queues to manage WCS
sessions. Those queues represent resources defined in the network, web server,
servlet engine, EJB container, data source and possibly a connection manager to
a custom backend system. Each of these WCS resources manages a queue of
requests waiting for their requested resource(s). The WebSphere queues are
load-dependent resources. The average service time of a request depends on
the number of concurrent clients. The queuing concept is shown in Figure 5-1.

Figure 5-1 WebSphere Queuing Network

5.1.1 Closed queues versus open queues
Most of the queues comprising the WebSphere queueing network are closed
queues. A closed queue places a limit on the maximum number of requests
active in the queue. Conversely, an open queue places no such restrictions on
the maximum number of requests active in a queue. A closed queue allows
system resources to be tightly managed. For example, the WebSphere servlet
engine’s Max Connections setting controls the size of the servlet engine queue.
Hence, closed queues allow system administrators to manage their applications
more effectively and robustly.

NetworkNetwork

DBDB

clients

Web
Server

Servlet
Engine

Data
Source

EJB
Container

WebSphere Queuing Network

DBServer
processes
78 WCS V5.1 Performance Tuning

In a closed queue, a request can be in one of two states: active or waiting. An
active request is either doing work or is waiting for a response from a
downstream queue. For example, an active request in the web server is either
doing work (such as retrieving static HTML) or waiting for a request to complete
in the servlet engine. In waiting state, the request is waiting to become active.
The request will remain in waiting state until one of the active requests leaves the
queue.

All web servers supported by WebSphere Application Server are closed queues.
The WebSphere servlet engine and data source are also closed queues in that
they allow you to specify the maximum concurrency at the resource. The EJB
container inherits its queue behavior from built-in Java ORB. Hence, the EJB
container, like the Java ORB, is an open queue. Given this fact, it is important to
maintain the number of concurrent EJB calls by WebSphere Commerce Suite at
an appropriate level. If enterprise beans are being called by servlets, the servlet
engine will limit the number of total concurrent requests into an EJB container.

5.1.2 Queue settings in WebSphere
Because each of the server resources manages a queue of requests waiting to
be processed, each of these queues has a way of adjusting the default settings,
providing a way of fine tuning the performance of your WCS system.

In Web Server
MaxClients is one of the determining factors for WebSphere Commerce Suite
queue. This parameter limits the total number of simultaneous HTTP requests
that IHS can process. Chapter 6, “Tuning Web Server” on page 127 provides
further information on changing this value and other IHS values. Table 5-1 shows
the MaxClient setting available for the IBM HTTP Server (IHS).

Table 5-1 Adjust queue size in web server

Server name Where to set? Parameter Default value Comments

IBM HTTP
Server

<IHS_install_dir
ectory>/conf/http
d.conf

MaxClients 150 A number of
related
parameters
such as
KeepAlive can
also be found
in this file.

For Apache on
NT, use
ThreadsPerChi
ld in httpd.cnf.
 Chapter 5. Tuning WebSphere Application Server 79

In servlet engine
Just as the web server has an in-bound queuing parameter to fine tune the
number of connections, so does the WebSphere Application Server servlet
engine. Max Connections specifies the number of connections to use for the
communication channel between the web server and a servlet engine. Each
connection represents a request for a servlet. Table 5-2 shows the Max
Connections parameter available within the servlet engine.

Table 5-2 Adjusting queue size in Servlet Engine

To change the value of MaxConnections, expand WebSphere Administrative
Domain -> expand node <your hostname> -> WebSphere Commerce Server
- <your instance name> -> Click on the servlet engine WCS Web Container ->
select Advanced tab as shown in Figure 5-2 on page 81. After updating the
value, click Apply and restart the application server.

Server name Where to set? Parameter Default value Comments

WebSphere
Application
Server

WAS
Administrative
Client

Max
Connections

10 Located on the
Advanced Tab
of the Servlet
Engine
property
sheet.
80 WCS V5.1 Performance Tuning

Figure 5-2 Adjust queue size in Servlet Engine

In DataSource definition
Most Java applications use Java Database Connectivity (JDBC) to access
database. In any access to a database, the initial database connection is a very
expensive operation. WebSphere Application Server provides database
connection pooling and connection reuse. The connection pool is used to direct
JDBC calls. Connection pooling gives significant performance improvement.
Table 5-3 shows the database connection pool parameter that is available within
the application server’s database connection manager.

Table 5-3 Adjust queue size of data source

Server name Where to set? Parameter Default
values

Comments

WebSphere
Application
Server
- DB
Connection
Manager

WAS
Administrative
Client

Minimum /
Maximum
connection
pool size

1 / 11 Located on the
Advanced Tab
of the
DataSource
property
sheet.
 Chapter 5. Tuning WebSphere Application Server 81

To change the value of minimum and maximum connections, expand
WebSphere Administrative Domain -> <your node hostname> ->
WebSphere Commerce Suite DB2 DataSource (Figure 5-3). After updating the
values, click Apply and restart the application server.

Figure 5-3 Adjust queue size of data source

In database
DB2 also has parameters that contribute to the WAS queuing pipeline. Those
are:

� maxagents

DB2 facilitates communication between the database manager and local
applications through database agents. These agents handle requests from
servlet engines and worker threads. When idle, agents wait in an agent pool
to be assigned. The number of available agents is dependent on the
database manager configuration parameters maxagents and
num_poolagents. Once the number of agents reaches the value of
maxagents, all subsequent requests that require a new agent are denied until
the number of agents falls below that value.
82 WCS V5.1 Performance Tuning

� maxappls

This parameter specifies the maximum number of concurrent applications
that can be connected (both local and remote) to a database. An application
can only connect to the database if there is an available connection
(maxappls) as well as an available agent (maxagents). When an application
attempts to connect to a database, but maxappls has already been reached,
an error is returned to the application indicating that the maximum number of
applications have been connected to the database.

The value of this parameter must be equal to or greater than the sum of the
connected applications, plus the number of these same applications that may
be concurrently in the process of completing a two-phase commit or rollback.

5.1.3 Determining queue setting
The following section describes a methodology for adjusting the settings of
WebSphere Application Server queues.Please keep in mind before starting your
tests that tuning should always be done using a reasonable replica of your
production environment.

Queuing before WebSphere Application Server
To begin with, you must understand that the queuing model for WebSphere
Commerce Suite V5.1 is similar to that of WebSphere Application Server, but not
exactly the same. The first rule of WebSphere Application Server’s queue tuning
is to minimize the number of requests in the WebSphere queues. In general, it is
better for requests to wait in the network (in front of the web server) than to wait
in the WebSphere Application Server. This configuration will result in only
allowing requests into the WebSphere Application Server queueing network that
are ready to be processed. To effectively configure the application server for
WebSphere Application Server in this fashion, the queues farthest upstream
(closest to client) should by the largest. Queues further downstream should be
progressively smaller.

However, the situation is a little bit different in case of WebSphere Commerce
Suite. Performance would be degraded if you make the size of DataSource
queue smaller than that of servlet engine queue because WCS internally
manages a number of worker threads serving resources other than servlet
requests. Many of the threads require access to the database. Theoretically, the
size of database connection pool is determined by adding up the number of
servlet requests and database connection requests from other threads. As a rule
of thumb, we recommend that the database connection pool size be bigger than
MaxConnections value at least by 20 or more. If your WAS system has enough
memory, make the database connection pool size much bigger than the
MaxConnections value. As a result, you start with a big queue on the web server,
 Chapter 5. Tuning WebSphere Application Server 83

then define a smaller queue on the servlet engine side and another big queue on
the DataSource side. A word of caution at this point; increasing the database
connection pool is good only if the size of memory is able to sustain the number
of database connections. On average, each DB2 connection uses 1-2MB of
memory. Also, you need to make sure DB2 has enough connection to support
your current connection pool size by adjusting the maxappls parameter.

Figure 5-4 illustrates a sample configuration that reflects this queuing model.
Please keep in mind that this is just an example to illustrate the different queue
settings and their relationship. You should analyze your workload requirement
closely and set the parameters appropriately.

Figure 5-4 Example for WCS queue settings

The example shows 200 clients arriving at the web server. Because the web
server is set to handle 75 concurrent clients, 125 requests will remain queued in
the network. As the 75 requests pass from the web server to the servlet engine,
25 will remain queued in the web server and the remaining 50 will be handled by
the servlet engine. This process will progress through the data source. The
database connection requests from the servlet engine are processed
simultaneously with database connection requests, let us say 45, from other
sources. The DataSource driver manages these 70 (25 + 45) requests altogether
and establishes connection with the database. No component in this system will

NetworkNetwork

DBDB

clients
Arriving
Requests

200

WaitingRequests
125

Arriving
Requests

75

Arriving
Requests

25

25 25
WaitingRequests Waiting Requests

WebServer DataSourceServletEngine
(N=70)(N=50)(N=75)

WCSQueue settings

DBRequests
fromother
resources

45
50

DBserver
processes
84 WCS V5.1 Performance Tuning

have to wait for work to arrive because at each point upstream, there is some
work waiting to enter that component. The bulk of the requests will be waiting
outside of WebSphere, that is, on the network. This will also add stability to
WebSphere because no one component is overloaded.

As mentioned above, this is just an example. In the following sections we will
show you how to figure out the proper queue settings for your environment,
which depend very much on your hardware capacity.

Drawing a throughput curve
Using a test case that represents the full scale production environment (in terms
of hardware capacity, network environment, customized WebSphere Commerce
Suite, and possibly backend systems), you need to run a set of experiments to
determine the saturation point of your system’s full capacity. The typical goal of
these tests is to drive your CPUs to near 100 percent utilization.

Start your initial baseline experiment with large queues. This will allow maximum
concurrency through your system. We suggest you to start your first experiment
with queue size of 100 for each component in the queuing network; web server,
servlet engine, and data source. You also might need to increase the maximum
connection allowed to your database instance (for example, DB2 parameter
MAXAPPLS).

Now begin a series of experiments to plot a throughput curve, increasing the
concurrent user load after each experiment. For example, perform experiments
with 1, 2, 5, 10, 15, 25, 50, 75, and 100 users. After each test run, record the
throughput (requests/second) and the response time (seconds/request).
Monitoring the usage of your CPU(s) is also very important to find out the correct
saturation point. Plot a graph of throughput numbers versus number of
concurrent users. The curve resulting from your baseline experiments should
resemble the typical throughput curve shown in Figure 5-5 on page 86.
 Chapter 5. Tuning WebSphere Application Server 85

Figure 5-5 Throughput curve example

The throughput of WebSphere Commerce Suite servers is a function of the
number of concurrent requests present on the total system.

Section A, “the light load zone,” shows that as the number of concurrent user
requests increase, the throughput increases almost linearly with the number of
requests. This reflects the fact that, at light loads, concurrent requests face very
little congestion within WebSphere’s system queues. After some point,
congestion starts to build up and throughput increases at a much lower rate until
it hits a saturation point that represents the maximum throughput value, as
determined by some bottleneck in the WebSphere system. The best type of
bottleneck is when the CPUs of the WebSphere Application Server become
saturated. This is desirable because you can easily remedy a CPU bottleneck by
adding additional or more powerful CPUs.

Section B, in the above figure is the “heavy load zone.” As you increase the
concurrent client load in this zone, throughput will remain relatively constant.
However, your response time will increase proportionally to your user load. That
is, if you double the user load in the “heavy load zone,” the response time will
double. At some point, represented by Section C (the “buckle zone”), one of the
system components becomes exhausted. At this point, throughput will start to
degrade. For example, the system might enter the “buckle zone” when the
network connections at the web server exhaust the limits of the network adapter,
or if you exceed the limit in the operating system for the number of open files.
86 WCS V5.1 Performance Tuning

If you have reached the saturation point by driving the system CPUs close to
90-100 percent, you are ready to move on to the next step. If your CPU was not
driven to 90-100 percent, then you may need to conduct a deeper analysis of
your test system to look for the cause of the bottleneck. For example, your
application might be creating excessive Java objects, causing garbage collection
bottlenecks (as discussed further in Section 5.2, “Tuning JVM” on page 89).
Cloning is another way to deal with application bottlenecks.

5.1.4 Queue adjustments
The number of the concurrent users at the saturation point represents the
maximum concurrency of your application. It also defines the boundary between
the light and heavy zones. Select a concurrent user value in the light load zone,
that has a desirable response time and throughput combination. For example if
your WebSphere Commerce Suite 5.1 server is saturated at 50 users, you might
find that 48 users gave the best throughput and response time combination. We
will call this the Max Application Concurrency value.

Max Application Concurrency becomes the value to use as the basis for
adjusting your WebSphere Commerce Suite 5.1 system queues.

Remember, we want most users to wait on the network, so the size of the servlet
engine queue should be smaller than the size of the web server queue. Also, the
size of the DataSource queue should be bigger than that of the servlet engine
queue to accommodate the extra database requests. However, making the
servlet engine queue too small is not recommended. According to internal
benchmark tests, the value of Max connections should be greater than 25 to
achieve better performance. All these considerations work out as follows. For
example, given Max Application Concurrency value of 48, you might want to set
the values of WebSphere queues with the following values; MaxClients=75, Max
Connections=50, ConnectionPool=(48 + 20)=68. Perform a set of additional
experiments adjusting these values slightly higher and lower to find the best
throughput/second and response time/second combination.

In many cases, only a fraction of the requests passing through one queue enter
the next queue downstream. For example, in a site with many static pages and
graphics, many requests will be turned around at the web server and will not be
passed to the servlet engine. So a higher value (150 or more) for the web server
queue (MaxClients in UNIX version of Apache) will result in a much higher
throughput in case of static contents.

We cannot provide standard queue size values valid for every hardware
platforms because these values heavily depend on your system environment
(hardware, network and so on).
 Chapter 5. Tuning WebSphere Application Server 87

5.1.5 Adjusting transport queue type
To route requests from the web server plug-in to the servlet engine of
WebSphere Commerce Suite 5.1, a transport queue has to be defined. The
WebSphere Application Server provides two different kind of queues types as
well as three different transport types.

To modify and view the settings for the transport queues, use the admin console
as follows:

Expand WebSphere Administrative Domain -> expand <your node
hostname> -> expand WebSphere Commerce Server - <your instance
name> -> Click on the servlet engine WCS Web Container -> select the
Advanced tab to display the WCS Web Container as shown in Figure 5-6. Use
drop down box of Queue Type to change a selection.

Figure 5-6 Adjusting queue type

To define your transport type, select Settings as shown in Figure 5-6. A small
screen is displayed similar to Figure 5-7 on page 89 where you can change the
transport type and other values.
88 WCS V5.1 Performance Tuning

Figure 5-7 Adjusting transport type

Queue types
� OSE will provide the best performance for the transport queue between the

Webserver plug-in and WebSphere servlet engine.

� HTTP should not be used at this time.

� NONE deactivates any communication between servlet engine and web
server plug-in, and should only be used with servlet redirector configurations.
(See WebSphere Scalability: WLM and Clustering using WebSphere
Application Server, SG24-6153)

OSE is the default queue type defined for Websphere Commerce Suite. We
recommend to stay with this configuration to achieve maximum performance.

Transport types
� Local Pipes should perform faster on AIX. In our test runs, we have observed

about a 30 percent increase in total throughput.

� INET Sockets is the default for WebSphere Commerce Suite 5.1, and
typically performs better on heavy loads.

� Java TCP/IP is only provided for debugging in special cases, and is not
recommended for production environments.

5.2 Tuning JVM
There are two different kinds of JVMs running on a WebSphere Commerce Suite
5.1 system. One kind is used by the WebSphere Application Server itself, and
the other is used exclusively for WebSphere Commerce Suite 5.1. At the
operating system level you will see four Java processes running if WebSphere
 Chapter 5. Tuning WebSphere Application Server 89

Commerce Suite 5.1 is started (Example 5-1). Each of these Java processes
represents a JVM. The first two of these processes belong to the WebSphere
Application Server; one for AdminServer process of WebSphere Application
Server and the other for the Nanny process. The third java process is WAS
Administrative Console and the fourth is the application server process running
WebSphere Commerce Suite.

Example 5-1 Four JVM processes

#ps -e|grep java
 6880 pts/0 2:54 java
 16138 pts/0 0:09 java
 16908 pts/0 1:00 java
 17204 pts/0 2:01 java
#
#ps -ef|grep java
 root 6880 16138 0 14:07:24 pts/0 2:54 /usr/IBMWebAS/java/jre/sh/../bin/java
<----------------------Some texts have been deleted here------------------->

js.jar com.ibm.ejs.sm.server.AdminServer -bootFile admin.config -nodeRestart

root 16138 15838 0 14:07:20 pts/0 0:09 /usr/IBMWebAS/java/jre/sh/../bin/java
<----------------------Some texts have been deleted here------------------->

com.ibm.ejs.sm.util.process.Nanny admin.config

root 16908 17676 0 14:07:49 pts/0 1:01 /usr/IBMWebAS/java/jre/sh/../bin/java
<----------------------Some texts have been deleted here------------------->

-Dserver.root=/usr/IBMWebAS com.ibm.ejs.sm.client.ui.EJSConsole

root 17204 6880 0 14:15:55 pts/0 2:01 /usr/IBMWebAS/java/jre/sh/../bin/java
<----------------------Some texts have been deleted here------------------->

/lib/wcsruntime.jar:./lib/wcssfc.jar:./lib/wcsuser.jar:./lib/wcsutilities.jar:

A JVM offers several tuning parameters that will impact the performance of the
runtime environment of the WebSphere Application Server itself as well as for
the WebSphere Commerce Suite 5.1 engine. In this part of the chapter we focus
on tuning the JVM settings for the application server of WebSphere Commerce
Suite 5.1. Tuning the JVM parameters of the WebSphere Application Server
Node (AdminServer process and Nanny process) has minimal impact on the
performance of the WebSphere Commerce Suite 5.1 runtime. Try to tune the
JVM settings of the AdminServer and Nanny processes only when you need to
shorten the time required to start WebSphere Application Server.

The JVM parameters of each WebSphere Application Server process are set via
the command line arguments defined in WebSphere Administration Console.
The field to enter command line arguments is located in the general tab for each
application server in the WebSphere Administration Console.
90 WCS V5.1 Performance Tuning

To view and modify the JVM settings of WebSphere Commerce Suite instance,
you just need to highlight your WebSphere Commerce Server in the
Administration Console as shown in Figure 5-8. Expand WebSphere
Administrative Domain -> Click on WebSphere Commerce Server -> open the
General tab to display the WCS Web Container as shown in Figure 5-8.

Figure 5-8 Tuning JVM settings with the Administrative Console

There are two main areas you need to pay attention to when you tune JVM:

� Heap Size

� Garbage collection
 Chapter 5. Tuning WebSphere Application Server 91

5.2.1 JVM heap size
The JVM offers two parameters for tuning of the heap size:

� Xmx specifies the maximum heap size of JVM

� Xms specifies the starting (minimum) heap size of JVM

Bigger heap size does not always result in better performance. In general,
increasing the size of Java heap improves throughput to the point where the
heap no longer resides in physical memory. Once the heap begins swapping to
disk, Java performance drastically suffers. Therefore, the Xmx heap setting
should be set small enough to contain the heap within physical memory. This will
depend on your particular hardware configuration and usage pattern because
physical memory usage will be shared between JVMs and other applications.

The other issue to consider when increasing the heap size is that throughput will
be improved as heap size is increased, but the pause time period which is
caused by JVM’s garbage collection activity will also increase. The larger heap
size becomes, the longer time it takes to fill up the heap memory. On the other
hand, garbage collection occurs less frequently with larger heap size.

You can use -verbosegc option of JVM to see if the current heap size is
adequate. Some sample output from -verbosegc is shown below in Example 5-2,
which was recorded during the startup phases of the webSphere Commerce
Server. The information collected with -verbosegc option is appended to the
standard error output of the application server.

Example 5-2 Sample output to Admin Console with -verbosegc option

<AF[32]: Allocation Failure. need 24 bytes, 10890 ms since last AF>
<AF[32]: managing allocation failure, action=1 (0/66363384) (3145728/3145728)>
<GC: freeing class sun.security.provider.SHA(83118518)>
<GC: freeing class java.lang.IllegalAccessException(831a8c98)>
<GC: freeing class java.lang.InstantiationException(831a8c00)>
<GC: unloaded and freed 3 classes>
<GC(32): freed 16135336 bytes in 482 ms, 27% free (19281064/69509112)>
<GC(32): mark: 418 ms, sweep: 64 ms, compact: 0 ms>
<GC(32): refs: soft 18 (age >= 2), weak 1, final 96, phantom 0>
<AF[32]: managing allocation failure, action=3 (19281064/69509112)>
<GC(32): need to expand mark bits for 81674232-byte heap>
<GC(32): expanded mark bits by 188416 to 1277952 bytes>
<GC(32): need to expand alloc bits for 81674232-byte heap>
<GC(32): expanded alloc bits by 188416 to 1277952 bytes>
<GC(32): expanded heap by 12165120 to 81674232 bytes, 38% free>
<AF[32]: completed in 699 ms>
92 WCS V5.1 Performance Tuning

Example 5-2 on page 92 shows in the highlighted line that the heap size has
been increased to just over 77MB (81674232-bytes) during the startup of
WebSphere Commerce Server JVM process. Therefore, the first thing you need
to consider is increasing the minimum heap size by using -Xms option. You will
need to further examine the output in order to estimate how much the heap size
should be increased. Making the heap size a little bigger than the point where
JVM heap size was automatically increased will be a good starting point. Taking
this into account, we decided to increase the minimum heap size (-Xms) to 85MB
in our tests. It turned out that we could avoid expansion of the heap area with this
size, but it was still not sufficient to avoid garbage collection during startup. So
we then increased the minimum heap size to 96MB. This setting did prevent
expansion as well as garbage collection from occurring.

5.2.2 Monitoring garbage collection
It is normal for garbage collection to consume anywhere from 5% to 20% of the
total execution time of a well-behaved WebSphere application. If not kept in
check, garbage collection can be your application’s biggest bottleneck, especially
when running on Symetric MultiProcessor (SMP) server machines.

The problem with garbage collection is simple; during garbage collection, all
application work stops. This is because modern JVMs support a single-threaded
garbage collector. During garbage collection, not only are freed objects collected,
but memory is also compacted to avoid fragmentation. It is this compacting that
forces Java to stop all other activity in the JVM. Figure 5-9 shows how garbage
collection can impact performance on a 2-way SMP computer.

Figure 5-9 JVM garbage collection
 Chapter 5. Tuning WebSphere Application Server 93

To analyze the behavior of garbage collection, you can use a small java program
named GCStats. In order to use it, you must first obtain its source code and
compile the source. We have included the source code of GCStat in Appendix D,
“GCStats.java” on page 199. GCStats tabulates statistics using the output of the
-verbosegc flag of the JVM. Therefore, you must start WCS server with
-verbosegc option before running GCStats. GCStats takes two arguments. The
first argument is the location of output file contain verbosegc data. The second
argument is the duration of the workload in which garbage collection took place.
It is specified in milliseconds. For example:

java GCStats /usr/lpp/CommerceSuite/instances/myinstance/logs/wcs.log 3600000

This tool summarizes the collected information about garbage collection activity
and is stored in the standard output log file. Example 5-3 below shows a sample
output of GCStats captured during the startup phase of WebSphere Commerce
Server. Minimum heap size was not specified in this case.

Example 5-3 Sample output of GCStats

FreeMem: 705720
TotalMem: 1048567
UsedMem: 343360

- GC Statistics for file - wcs.log

-**** Totals ***
- 41 Total number of GCs
- 14098 ms. Total time in GCs
- 523523 Kbytes. Total memory collected during GCs
-
-**** Averages ***
- 343 ms. Average time per GC. (stddev=229 ms.)
- 12768 Kbytes. Average memory collected per GC. (stddev=11450 Kbytes)
- 29%. Free memory after each GC. (stddev=7%)
- 0.4699333333333333% of total time (3000000ms.) spent in GC.
___________________________ Wed May 09 17:04:22 CDT 2001

GCStats can provide clues as to whether your application is over utilizing
objects. The primary statistic to look at is “total time spent in GC” (the last
statistic presented in the output). As a rule of thumb, this number should not be
much larger than 15%.

If the number leads you to believe that over-utilizing objects is leading to garbage
collection bottleneck, there are two possible actions. The most cost effective but
limited remedy is to optimize your application by implementing object caches and
pools. Use a Java profiler to determine which objects in your application should
be targeted. But this method is applicable only when you have access to source
94 WCS V5.1 Performance Tuning

codes. The second way is to use a combination of server cloning and additional
memory and processors (in an SMP computer). The additional memory will allow
each clone to maintain a reasonable heap size. The additional processors will
allow the clones to distribute the workload among multiple processors.

So far we have showed you how to figure out the minimum heap size for the
startup of the WebSphere Commerce Server. The next step is to find out a
suitable amount of heap space during workload.

To get this value, you can either collect and analyze the output of garbage
collection (by looking for entries of “expanded heap by ..” in the log file as shown
in Example 5-2 on page 92), or to use Resource Analyzer. The more convenient
and powerful way to do analysis is definitely to use Resource Analyzer
(Figure 5-10) because it also provides automatically generated graphical output;
average, minimum, and maximum values; and even has a replay function for
logged data.

Figure 5-10 Using Resource Analyzer for JVM monitoring

To monitor the behavior of the JVM heap size with Resource Analyzer you need
to start the resources monitor in the GUI of Resource Analyzer (see Figure 5-10
above):

Expand WebSphere Administrative Domain -> <your Node-name> ->
WebSphere Commerce Server - <your instance name> -> runtime ->
highlight resources -> click the start button icon in the menu bar.
 Chapter 5. Tuning WebSphere Application Server 95

If you want to log the data collected by Resource Analyzer, you must manually
activate the logging option (this also allows you to use the playback function of
Resource Analyzer):

Select Logging in menu bar -> click start -> specify your log file name -> click on
OK.

The next step is to figure out what the best maximum heap size is under a given
workload. To find out a suitable value for the maximum heap size, you should run
multiple tests with different combinations for the maximum and minimum heap
size. During these tests the workload must be maintained at a constant level to
get comparable results for throughput/second and response time/request.

As a good starting point of tuning JVM heap size, consider setting the maximum
heap size to one quarter of the total physical memory of your server and setting
the minimum to one half of the maximum. For example, for a server with 1GB of
memory:

-Xms128m -Xmx256m

Then you should try some higher and lower values for both of maximum and
minimum heap size, setting both values equal or running only with maximum
heap size defined in different values.

During our tests, with different combinations of maximum and minimum heap
sizes values, the average heap size value stayed very stable at about
140-160MB (value obtained from average memSize in Resource Analyzer).
Sometimes we hit the maximum heap size of 192MB (in one of our test cases
with -Xmx192m), but the garbage collection reduced the used memory very fast
and kept the memory utilization ratio of the system stable.

Set the minimum heap size to be as big as maximum heap size. This technique
prevents java heap from resizing and will probably make the system more stable.
In our testing we found out that the best throughput number could be achieved
with settings of minimum heap size to -Xms192m and maximum heap size to
-Xmx192m - so both to 192MB. These maximum and minimum values could vary
machine by machine. Our test was done on a two-way F50 AIX server with 1GB
of RAM and another two-way F50 as a remote database server.

5.3 Relaxing auto reloads
WebSphere Application Server provides reloading of servlet class files as well as
reloading of JSP files. These reload settings are set for each web application.
96 WCS V5.1 Performance Tuning

5.3.1 Servlet auto reload
WebSphere Application Server has an auto reload capability that specifies
whether to automatically reload servlets in a Web application when its class files
change. This capability may simplify procedures required for testing and
managing your web site because you don’t need to restart the changed web
application after changing servlet class files. However, this dynamic ability to
reload servlets requires polling at a regular interval. The overhead for doing
polling could have a negative impact on performance. Once you are in
production mode, we recommend turning off servlet auto reload for WebSphere
Commerce Suite 5.1 application server.

WebSphere Commerce Suite 5.1 uses two web applications in which you should
turn off servlet auto reload option. To modify the settings of the web applications
WCS Stores and WCS Tools, use the admin client of WebSphere Application
Server as follows:

Expand WebSphere Administrative Domain -> expand <your node
hostname> -> expand application server WebSphere Commerce Server -
<your instance name> -> servlet engine WCS Web Container -> click on web
application WCS Stores or WCS Tools -> select the Advanced tab to display
the Web Application screen as shown in Figure 5-11 on page 98. Scroll down to
the Auto Reload setting and switch True (default value) to False in the drop down
box. Click Apply to save your new setting.
 Chapter 5. Tuning WebSphere Application Server 97

Figure 5-11 Adjusting servlet auto reload

There is also a reload interval property, as shown in Figure 5-11, that can be
used to control the number of seconds between class reloading. An alternative to
changing auto reload to off would be to change the value for reload interval to a
very long interval value.

During our tests we did not find any significant performance improvement (less
than 1 percent) by turning off servlet auto reload or setting it to a very high value.
We suppose the workload given to the test system was not big enough to
observe the effect of this option. However, turning off auto servlet reload makes
sense on a production environment and should decrease the amount of
overhead in the runtime environment of WebSphere Commerce Suite 5.1.

5.3.2 JSP reload interval
In WebSphere Application Server 3.5 and above, the JSP processing engine is
implemented as a servlet. The JSP servlet is invoked to handle requests
destined to all JSP files matching the assigned URL filter, such as /webapp/*.jsp.
Each time a JSP file is requested, the corresponding disk file is checked to see if
a newer version is available. This can be an expensive operation. As mentioned
in Section 5.3.1, “Servlet auto reload” on page 97, WebSphere Commerce Suite
98 WCS V5.1 Performance Tuning

5.1 has two web applications named WCS Stores and WCS Tools. Change the
rechecking interval by adding an init parameter, minTimeBetweenStat, to the JSP
servlet named “WCS JSP Compiler” in each of the two web applications. To do
this you can use the WebSphere Application Server Administrative Console:

Expand WebSphere Administrative Domain -> expand <your node
hostname> -> expand WebSphere Commerce Server - <your instance
name> -> expand servlet engine WCS Web Container -> expand both web
applications named WCS Stores and WCS Tools -> click on each JSP servlet
named WCS JSP Compiler -> open the Advanced tab to display the WCS JSP
Complier screen as shown in Figure 5-12. Enter a new parameter name as
minTimeBetweenStat in Init Parameters table and enter a value for it. Its default
value is 1000(ms). 100,000 is recommended. Then click Apply to save your
changes.

Figure 5-12 Adjusting JSP reload interval

5.4 Tuning EJB performance
WebSphere Commerce Suite uses Enterprise JavaBeans (EJB) as its default
method to access database information.Those Java beans are mostly entity
beans (221 entity beans out of 238 Java beans), plus a few stateless session
beans performing intensive database operations (17 session beans). Those
 Chapter 5. Tuning WebSphere Application Server 99

EJBs constitute a persistent object layer for WebSphere Commerce Suite and
WebSphere Commerce Suite data should be accessed only through those EJB
objects. There are two points to consider which are discussed in the following
sections:

� EJB container cache

� EJB pool

5.4.1 Tuning EJB container cache
EJBs reside in the Enterprise JavaBean container of the WebSphere Application
Server. WebSphere Application Server has a few parameters associated with the
EJB container. Figure 5-13 on page 101 presents the parameters you can
modify. To access those values in the WAS Administration Console, expand the
domain information, the server node, and the WebSphere Commerce Server
instance, and click on WCS EJB Container. Then click on the Advanced tab.

The default WebSphere Commerce Suite values are the same as the default
values set in any standard WebSphere Application Server installation. They are:

� Cache size : 2047

� Cache preferred limit : 2000

� Cache absolute limit : 2047

� Cache clean-up interval : 1000

� Passivation directory : null

Prevent the number of concurrent active EJBs from exceeding the limits
specified in WebSphere Application Server. According to our tests, the default
values of EJB container cache parameters are big enough to sustain the EJBs
deployed in WebSphere Commerce Suite V5.1. However, we recommend you
check whether those values are set to appropriate values before you transition to
a production stage. We will discuss how to determine the maximum number of
active EJBs in more detail later in this section.
100 WCS V5.1 Performance Tuning

Figure 5-13 EJB Container cache parameters

Cache size
This parameter specifies the number of buckets in the cache’s hash table, not the
size of the container cache. If you change this value, change the Cache absolute
limit property to correspond. For example, if you change the cache size to 3000,
change the cache absolute limit to 3000, unless for some reason you do not want
all of the available cache to be used. However, we recommend you not change
the default value.

Cache preferred limit
This parameter specifies the number of bean instances the container attempts to
retain in the cache. The actual number of bean instances cached can still grow
up to the cache absolute limit value, but WebSphere Application Server will
remove them the next time it cleans up the cache. Once the number of active
beans reaches the cache absolute limit, the container will not create any new
bean instances.
 Chapter 5. Tuning WebSphere Application Server 101

Cache absolute limit
This is the absolute limit for entries that will be maintained in cache by the
container cache manager. The container will fail to allocate new bean instances
when the total number of active beans reaches this limit.

Cache clean-up interval
This parameter is used to specify the time in seconds separating two attempts by
the system to reduce the number of cached EJBs to the cache preferred limit.
The larger the value of the cache preferred limit is, the longer this time should be
set.

Passivation directory
Specifies the name of a directory where the container saves the persistent state
of passivated session beans. Session beans are passivated when the container
needs to reclaim space in the bean cache. At passivation time, the container
serializes the bean instance to a file in the passivation directory and discards the
instance from the bean cache. If, at a later time, a request arrives for the
passivated bean instance, the container retrieves it from the passivation
directory, deserializes it, returns it to the cache, and dispatches the request to it.
If any of these steps fail (for example, if the bean instance is no longer in the
passivation directory), then the method invocation fails.

This parameter is not set by default. It is not useful for WebSphere Commerce
Suite because WebSphere Commerce Suite uses only stateless session beans.

In case that stateful session beans are going to be used, we recommend you
limit activation and passivation of EJBs to a minimum level because these events
invoke disk I/O activities. To minimize frequency of passivation and activation,
adjust the cache parameters described above so that EJB container will not run
out of resources.

In order to determine appropriate values for the Cache preferred limit and Cache
absolute limit, you need to find out the maximum number of EJBs simultaneously
in use.

A rule of thumb to get a rough estimate of this value is to multiply the maximum
number of simultaneous transactions supported by the site by the average
number of entity beans used in the transactions, and then add the maximum
number of session beans.

The cache absolute limit value v is shown in Figure 5-14 on page 103.
102 WCS V5.1 Performance Tuning

Figure 5-14 Cache absolute limit

with the maximum number of session beans, the maximum number
of entity beans, and n the maximum number of transactions executed at the
moment.

Remember that transactional behavior of your site will change from time to time,
and the pattern you are seeing might be very different from the one you have
already seen. The fluctuation in usage pattern could be quite significant from
time to time. To get to a more accurate assessment of v value, use several time
measurements of and . Using average values based on sample
statistics collected over a period of time is recommended.

We used Resource Analyzer to monitor EJB activity during our tests, but we
never observed more than 300 EJBs active at a time. As you will notice, this is far
less than 2000, which is the default value of Cache preferred limit. It was not
surprising, considering all EJBs in WebSphere Commerce Suite are deployed
with WLM enabled. For WLM-enabled EJBs, their database access mode is set
to shared mode, which is Option C caching. Option C caching means the EJBs
are cached only for the length of a transaction, removing the bean upon
completion of the transaction. A following transaction requiring the same EJB
need to reload the bean to the cache. Therefore the EJB cache parameters will
have very little effect on performance in this case. Throughout our test runs, we
were unable to see any need to change the default EJB parameters defined in
WebSphere Application Server.

To summarize our findings, tuning EJB cache parameters has little effect
because of the way EJBs in WCS have been deployed. We recommend to
change the default values only if your application clearly requires more EJBs to
be cached and Option A caching can be applied.

5.4.2 Tuning EJB pools
Another way to tune your system is to limit the number of EJBs available in the
pool. Each instance of EJB available in the pool consumes a certain amount of
system power. Therefore, if the system actually needs far less EJBs than what
are retained in the pool, the system power is wasted to keep those unused EJB
instances.

Restriction: You cannot use Option A caching with WLM enabled.

v s≤ max n emax⋅+

smax emax

smax emax
 Chapter 5. Tuning WebSphere Application Server 103

To find the correct value for your pools, you first have to set the pool size to a
large number and see what is required by your store. You can find this value by
monitoring EJB utilization with Resource Analyzer. This is not an easy task,
because in order to trace EJB activities, you have to capture various trace
information from WebSphere Application Server. Turning on trace will impact the
overall performance of your system. Of course, you do not need to turn on tracing
for long, but to be able to determine appropriate value for EJB pool size, you
need to capture trace data under a workload similar to the workload generated in
the production environment. Another factor to consider is that WebSphere
Commerce Suite has almost 300 EJBs. Keeping track of all of them might require
a lot of work. To be practical, you had better concentrate on several most
frequently used EJBs.

The values of EJB pools can be set in the advanced tab of the EJB parameters in
the WAS Administrative Console as shown in Figure 5-15 on page 104. The
default value is set to 100 for each EJB.

Figure 5-15 Setting EJB pool size
104 WCS V5.1 Performance Tuning

5.5 Effect of enabling WAS session management
WebSphere Commerce Suite supports two types of session management;
cookie-based and URL rewriting. The administrator can choose to support either
only cookie-based session management or both cookie-based and URL rewriting
session management. If Commerce Suite only supports cookie-based
management, shoppers' browsers must be able to accept cookies. If both
cookie-based and URL rewriting are selected, Commerce Suite first attempts to
use cookies to manage sessions. If the shopper's browser is set to not accept
cookies, URL rewriting is used.

Commerce Suite session cookies are internal to Commerce Suite and are not
persisted to the database, whereas WebSphere Application Server cookies
provide an option to persist either to memory or to the database. There are two
cases when WAS session management turns out to be more useful than WCS
session management. First, if you plan to install multiple WCS machines and
want to let them share session information, use WebSphere Application Server’s
session management to persist the session information to WebSphere
Application Server’s database. Second, if users wish to store and maintain their
own session information, it may not be appropriate to use WCS sessions,
especially if the users’ session information is large. Under these conditions, the
users may decide to use WAS Session Management.

To turn on WAS session management, go to WebSphere Commerce Suite
Configuration Manager. Develop the tree by first selecting WebSphere
Commerce Suite -> node name -> Instance List -> instance name ->
Instance properties -> Session Management.
 Chapter 5. Tuning WebSphere Application Server 105

Figure 5-16 Switching from WCS to WAS session management

As you can see in Figure 5-16, the Cookie session manager parameter in the
General tab has a drop down list that allows you to select the management
system required by your application.

Note that WebSphere Commerce Suite session manager automatically enables
session persistence in case of multi-tier installation. You do not have to do it
yourself. If you are using WAS session management, however, you will have to
take care of the persistence issue. To enable WAS session management, simply
switch the value of Cookie session manager from “WCS” to “WAS” .

WebSphere Application Server manages sessions in two different ways. You can
either set it to keep session information in its memory, or to save it in a database.
The second option is accomplished by enabling persistent session management.
106 WCS V5.1 Performance Tuning

The benefits of using persistent sessions are:

� To keep session information from disappearing in case of a failure of the
application server node.

� To share this information between different application server instances.

� To reduce the quantity of information loaded in memory when you store very
large objects in your sessions.

You need to enable persistent session management in case that you want to
establish workload management among multiple WCS clones. You can get more
information on the procedure required to create clones in Chapter 4 of
WebSphere Scalability: WLM and Clustering using WebSphere Application
Server, SG24-6153.

To activate persistent session management in WAS, you first need to create a
database that will hold all the session information. Log on as your db2
administrator ID, then enter the following command on your database server:

db2 create db <name_of_db>

where you will replace <name_of_db> with the name you want to give to this
database. For our tests, we simply called it “session”. If the database is on a
remote machine, you need to create a database alias on the WAS machine.

Create a new DataSource in WebSphere, referencing the new table. To do that,
right-click on WebSphere Administrative Domain, and then select Create ->
DataSource. Give a name to the DataSource. We called our new DataSource
“WCS Sessions DB2 Datasource session”. In case that the database is on a
remote machine, you need to provide database user id and its password. Enter
the name of your database, which was named as “session” in our case. Next
select the correct driver for your database.

Once your DataSource is created, you can activate the persistence sessions in
WebSphere Application Server. Expand WebSphere Administrative Domain ->
node name -> WebSphere Commerce Server -> WCS Web Container ->
Session Manager.

Select the Enable tab, as shown on Figure 5-17 on page 108, and then set
Enable Persistent Sessions to Yes.
 Chapter 5. Tuning WebSphere Application Server 107

Figure 5-17 Enabling persistent session management

Next switch to the Persistence tab and enter the DataSource name you have
defined, as shown in Figure 5-18 on page 109.
108 WCS V5.1 Performance Tuning

Figure 5-18 Configuring persistent session management

The tests we performed in a 2 tier configuration showed that WCS Session
Management provided the best throughput. Switching to WAS Session
Management resulted in a significant decrease in throughput. In our benchmark
test, the throughput was decreased by eight percent. As you can suppose,
switching from persistent session management to a database was even worse.
We observed a ten percent decrease in throughput when compared with WCS
session management.

The values given here are examples. They depend on your architecture and
machine configurations, the behavior of the customers, and many other factors.
If you have done a lot of customization and the amount of each session
information is large, you may actually experience better performance while using
WAS persistent session management.
 Chapter 5. Tuning WebSphere Application Server 109

5.6 Prepared statement cache
Each time your application submits a query to a database, the database
manager creates a query plan. The query is then executed with this plan. In
WebSphere Commerce Suite, these queries are part of the entity EJBs.
WebSphere Commerce Suite uses the PreparedStatement class to define query
objects. PreparedStatement is different from the Statement class, as
PreparedStatement creates an object that precompiles the SQL associated with
the query plan. This is a big improvement over the Statement class, which
requires the SQL to be compiled each time the SQL statement is run.

On top of this, WebSphere Application Server provides a PreparedStatement
cache. The cache reduces the initial overhead on the database manager. Where
possible, WebSphere provides the database manager with an existing execution
plan for the prepared statement.

If you write your own entity beans while customizing your WebSphere Commerce
Suite instance, please remember to use the PreparedStatement class.

5.6.1 Choosing a value for the prepared statement cache
The cache is shared across all data sources. We used this formula to calculate
the cache size:

Cache = (number of unique prepared statements) * (number of
concurrent clients)

Note: Using WLM with multiple clones of WCS instances

We have already explained before that WebSphere Commerce Suite is now a
WebSphere Application Server application. As such, it can benefit from the
cloning possibilities of WebSphere.Application Server.

For more information about cloning and Workload management, See
WebSphere Scalibility: WLM and Clustering using WebSphere Application
Server, SG24-6153.
110 WCS V5.1 Performance Tuning

5.6.2 Enabling and changing the prepared statement cache
The size of the prepared statement cache is determined by a command line
argument to the WebSphere Commerce Suite application server. As shown in
Figure 5-19, in the command line arguments field specify:

-Dcom.ibm.ejs.dbm.PrepStmtCacheSize

Figure 5-19 Adjusting prepared statement cache size

5.6.3 Prepared statement key cache
This parameter controls the size of the intermediate cache used to map between
SQL statements and entries in the prepared statement cache. Unlike the
prepared statement cache, which is shared among all DataSources, this
parameter specifies the number of entries in the cache for each Data Source.
The suggested value is the number of prepared statements in the application.
Figure 5-20 on page 112 shows how to specify the prepared statement key
cache in the Command line arguments field:

Dcom.ibm.ejs.dbm.PrepStmtKeyCacheSize
 Chapter 5. Tuning WebSphere Application Server 111

Figure 5-20 Adjusting prepared statement key cache

5.7 Call-by-reference
The EJB 1.0 specifications states that two types of method calls can be made
when invoking remote methods; call-by-reference and call-by-value. The
call-by-value method must first make a copy of all parameters that might be used
by the remote method before the actual call is made. It is this copying process
that adversely effects system performance. It is possible to configure WAS to
pass a reference to the object without first having to make a copy of first.

Significant performance gains of up to 50% can be achieved by configuring WAS
to use call-by-reference when the EJB client (e.g. a servlet) and the EJB server
are installed on the same WAS instance. However, call-by-reference only helps
performance when non-primitive Objects types are being passed as parameters.
Meaning, int, floats, etc., are always copied regardless of the call model.
Call-by-reference can have side effects if the remote method attempts to modify
the referenced object resulting in unexpected side effects.
112 WCS V5.1 Performance Tuning

The default installation behavior for WCS 5.1 is to use call-by-reference because
of the performance gains that are inherent with this calling model, and the
following two lines are added to the command line arguments of the WCS
Application Server:

-Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.Util
-Dcom.ibm.CORBA.iiop.noLocalCopies=true

Figure 5-21 shows how this setting was done in the Administrative Console.

Figure 5-21 WebSphere Commerce Server command line arguments

5.8 Optimizing logging systems
A WCS system is dependant on many subsystems and components all working
together in harmony. A variety of logs are produced by the WAS, WCS, and IHS
servers that can provide valuable performance and diagnostic data about the
system operation. This section describes what logs files are created by the WAS,
WCS, and IHS servers, and how to change their settings and default locations.

Because each of the subsystems generate one or more log files apiece, the
following sections will categorize them as follows:
 Chapter 5. Tuning WebSphere Application Server 113

� IHS logs

� WAS logs

� WCS logs

5.8.1 IHS logs
IHS has the ability to log all client access and errors to a file for reporting
purposes. On a busy site, the access.log file can grow over 1MB or more for
each 10,000 requests received. Keeping this in mind, all IHS logs should be kept
on a separate set of drives within their own volume group. By doing this you will
reduce the amount of disk I/O on the root volume group. If your installation does
not provide enough drives to allow for a separate log volume group, then a new
logical volume should be created using a size which will handle the expected
size of your log files.

The following IBM redbook is an excellent reference when configuring volume
groups and logical volumes.See AIX Logical Volume Manager, From A to Z:
Introduction and Concepts, SG24-5432

access.log
It will probably be necessary to move or delete the access.log log file on a
regular basis. This cannot be done while the server is still running because IHS
will continue writing to the old log file. Instead, the server must be restarted after
the log file is moved or deleted so that it will open a new log. On a production
system this is not practical, so one way around this is to use the rotatelogs
command included with IHS. rotatelogs will automatically move and create a
log file at a pre-set interval, such as once per day, eliminating the need to restart
the IHS server. Example 5-4 shows an example of how rotatelogs is used.

Example 5-4 Rotatelogs usage for TransferLog in the httpd.conf file

#
TransferLog "|rotatelogs <path_to_logs>/access.log 86400"
#

Note: Keep in mind that the amount of space allocated for the IHS logs should
be large enough to accommodate several days worth of logs.
114 WCS V5.1 Performance Tuning

where “| rotatelogs <path_to_logs>/access.log 86400” instructs IHS to send
all access log data to the rotatelogs program, which will be written to the
/path/to/logs/access.log.nnnn file every 86400 seconds or 24 hours. The nnnn
extension is added by the rotatelogs program and denotes system time when
the log was created.

In Section 5.1, “Adjusting queue sizes” on page 78, we discuss the various
queues that are inherent in WCS and the methods of adjusting them. It is worth
noting that access.log file is the file that records all client activity with the greatest
amount of detail. This file should be reviewed using a product such as the IBM
WebSphere Site Analyzer to measure overall site performance as you make
changes to various system settings.

error.log
The error.log file behaves in the same way as the access.log file, although there
should be far fewer entries in the error.log file. It is a good practice to check the
contents of the error.log file from time to time to identify errors and determine
their severity.

The rotatelogs command can also be used to copy the error.log on a daily basis
in a similar fashion to the access.log. Example 5-5 shows an example of how
rotatelogs is used.

Example 5-5 Rotatelogs usage for error.log file in the httpd.conf file

#
ErrorLog "|rotatelogs <path_to_logs>/error.log 86400"
#

5.8.2 WAS logs
Just as IHS creates a number logs showing the operation of the system, WAS
also has several log files that can be utilized to check whether the system is
functioning properly. They have a low-to-medium impact on performance, and
should be left enabled, allowing them to be reviewed should an error or problem
condition occur. If possible, logs should be stored on a separate logical volume.

The log files specific to the WebSphere Application Server Administrative Server
will be listed below. Section 5.8.3, “WCS logs” on page 120 will detail more
specific information specific to WCS logging.

Note: CustomLog and TransferLog work in the same fashion for logging, with
the only exception being that TransferLog does not allow for the log format to
be specified explicitly or for conditional logging of requests.
 Chapter 5. Tuning WebSphere Application Server 115

Serious Event reporting
The administrative repository stores event logs as well as configurations. Event
information will appear in the bottom pane of the Administrative Console. Event
information is also stored in standard output files such as <application server
name>stdout.log and <application server name>stderr.log under the
<WAS_install_path>/logs directory.

Serious Event Pool interval
The Serious Event Listener is a lightweight background thread that runs every 10
seconds by default, polling the administrative repository for changes in the
configuration or runtime state. The listener executes select statements and
stores them in the administrative repository. By default, a database select is
issued to the administrative repository for each type of event (fatal, warning,
audit). Any events returned as a result are reported in the Console Messages
section of the Administration Client. Although it does use significant amount of
system resources, the Serious Event listener thread can be tuned to execute at a
desired time interval.

You can change the polling interval and the types of messages reported by
selecting the node in the Administration Client then selecting Console->
Trace-> Event Viewer..., A new window will pop up, presenting Events Viewer
dialog. The pool interval field can be accessed under the Preferences tab shown
in Figure 5-22 on page 117 and adjusted by changing Serious Event Pool
Interval from the default of 10 seconds.
116 WCS V5.1 Performance Tuning

Figure 5-22 Serious Event preferences screen

A value of 0 turns this off and is not recommended. Once you go into production
you can set this interval period to be longer. The check boxes allow you to
choose the event categories to be selected.

Log Limit
A more important setting for performance is the Log Limit for the Serious Events
table in the WebSphere configuration repository. The default setting for the Log
Limit is 0 (zero) for versions of WAS prior to 3.5. This setting is misleading
because this actually maps to no limit being set for the entries in the Serious
Events table. Over time this will degrade database performance as the table
grows, and could result in a database error if sufficient space on the file is not
allocated. Setting this to a value of between 1000 and 5000 should provide
adequate logging while not adversely impacting system performance.

tracefile
WAS displays system messages in the administration console messages area
and also writes these messages to a file called “tracefile” located in the
<WAS_install_path>/logs directory by default. When WAS is first started, all
startup and initialization messages are written the tracefile log including the
message “WebSphere Administration server open for e-business”, indicating that
 Chapter 5. Tuning WebSphere Application Server 117

the WAS initialization is complete. If desired, you can specify an alternative file
name and directory by updating the entry for the
“com.ibm.ejs.sm.adminServer.traceFile” property in the
<WAS_install_path>/bin/admin.config file.

nanny.trace
The nanny.trace file records administrative events for WAS. This file is located in
the /usr/IBMWebAS/logs directory by default. If desired, you can specify an
alternative file name and directory by updating the entry for the
“com.ibm.ejs.sm.util.process.Nanny.tracefile” property in the
<WAS_install_path>/bin/admin.config file.

This file records events associated with starting and restarting WAS and
application servers, and as such its size should not grow significantly.

<application server name>_stdout.log | stderr.log
Each application server created within WAS has two standard logs files that are
associated with it; stdout.log and stderr.log. The default setting of standard
output and standard error are stdout.log and stderr.log. We suggest that you
specify the file name as a unique name, such as <application server
name>_stdout.log or stderr.log.

The stdout.log contains System.out messages from the application server or
Servlet Redirector, and stderr.log contains System.err messages from it. The
amount of information logged to these files is application dependant, so their size
should be monitored and truncated as required.

To change the log file names or the directory location using the WAS
administrative client, expand the WebSphere Administrative Domain ->
expand <your node hostname> -> click on WebSphere Commerce Server -
<your instance name>, and enter a new directory and filename for each of the
logs. Then click Apply as shown in Figure 5-23 on page 119.
118 WCS V5.1 Performance Tuning

Figure 5-23 WAS Application Server stdout and stderr log entries

There is a debug feature that can also be enabled for each application server
that will increase the amount of logged information by adding debugging
information. In a production environment this setting should be turned off
because of the performance impact it causes on the system. The default setting
for debug mode is off. To verify the setting of debug mode expand the
WebSphere Administrative Domain -> expand <your node hostname> ->
click on WebSphere Commerce Server - <your instance name>, then click on
the Debug tab and verify that the check box next to “Debug enabled” is
unchecked as shown in Figure 5-24 on page 120.
 Chapter 5. Tuning WebSphere Application Server 119

Figure 5-24 Turning off Debug option

5.8.3 WCS logs
There are two types of logs found in the WebSphere Commerce Server;
diagnostic and activity. Diagnostic logs are used for problem determination and
are stored in log files. Activity logs record events that are stored in the
Commerce Suite database. WCS allows you to choose which components you
want to appear in the trace file, as well as the level of defect tracking that you
want the trace file to contain. The more items you trace with a higher defect level,
the more performance impact you will experience on the overall system. Unless it
is needed, WCS logging should be kept to the minimum number of components
required, with the defect level set either to normal or none.

The following displays the general settings for the WCS logging facility. To make
changes to the WCS log system, start the configuration manager and then
expand WebSphere Commerce Suite -> expand <your node hostname> ->
expand Instance List -> expand <your instance name> -> expand Instance
Properties -> then click on Log System. Figure 5-25 on page 121 will be
displayed showing the parameters that were contained in the Instance Creation
wizard.
120 WCS V5.1 Performance Tuning

Figure 5-25 WCS Log System General settings

Selecting the Advanced tab will display Figure 5-26 on page 122, which allows
you to select the components you want traced and the trace level. Specify only
those components that are necessary as each selection will have an effect on
overall performance. Once your selections are complete, click Apply. Then stop
and restart WCS. For more information on individual components, please see the
Commerce Suite online help.
 Chapter 5. Tuning WebSphere Application Server 121

Figure 5-26 WCS Log System Advanced settings

WASConfig.log
Found in your /usr/lpp/CommerceSuite/instances/<instance_name>/logs
directory. This log describes the WebSphere Application Server actions such as
importing Commerce Suite entity beans and creating the DataSource during the
initial installation, and is not used afterwards.

createdbschema.log
Found in your /usr/lpp/CommerceSuite/instances/<instance_name>/logs
directory. This logs the steps during the initial Commerce Suite schema creation
process, and is not used afterwards.

populatedb.log
Found in your /usr/lpp/CommerceSuite/<instance_name>/logs directory. This log
describes the population history of the database that is created during the initial
instance creation, and is not used afterwards.
122 WCS V5.1 Performance Tuning

wcs.log
Found in your /usr/lpp/CommerceSuite/ instances/<instance_name>/logs
directory. This log describes the WebSphere Commerce Server.

WCSconfig.log
Found in your /usr/lpp/CommerceSuite/instances/<instance_name>/logs
directory. This log describes what the Configuration Manager is doing. You can
modify the level of detail in this log through the menu options shown in
Figure 5-27. To get this menu, click Settings -> Log Settings... in the WCS
Configuration Manager. The log level should be normal in most cases, with the
check box for “Append to existing log” left unchecked. This will recreate the
wcsconfig.log file each time the Configuration Manager is started.

Figure 5-27 WCS Configuration Log Settings

5.9 Avoiding file serving servlet
When placing web resources such as HTML files, JavaScript scripts, image files,
JSP files, and so on, you can choose to have the pages be served by WAS or
just be served by the web server. To have the files served by the web server, you
need to place them in the web server's document root. If you choose to have the
files be served by WAS, you need to use file servlet. The file servlet (sometimes
called file-serving servlet or file serving enabler) can serve HTML files or other
files located in the web application’s document root, which is defined in WAS,
without the help of extra pass rule definitions in the web server. Remember that
by default two web applications, WCS Stores and WCS Tools, exist in WCS
V5.1. The file servlets defined in the web applications handle files whose URLs
are not covered by the configured servlet URLs.
 Chapter 5. Tuning WebSphere Application Server 123

For the case where HTML pages are served by the web server, as opposed to
being served by the WAS, there may be an increase in performance because the
web server is serving the pages directly without the help of file serving servlet.
Therefore, we recommend you avoid using the file serving servlet whenever
possible.

There is a caveat you should be aware of in applying this technique. The
procedure requires changes in the source codes of your web resources as well
as changes in the web server configuration. For example, suppose a GIF file is
referenced with a relative path of ‘images/picture.gif’ in a JSP file, let’s say
/usr/lpp/CommerceSuite/stores/web/<store_name>/banner.jsp. When the JSP
file is called from a browser, because it is served by a servlet the image file is
expected to be found in a path relative to the WCS Stores’s document root. The
default web path in this Web Application is <WCS_install_directory>/stores/web.
The problem here is that the web path cannot be understood by the web server if
you disable the file serving servlet for performance reasons. Remember that we
have used a relative path to point to picture.gif in the JSP file. Relative paths are
relative to the original request. Because we have disabled the file servlet, the
relative path is now pointing to the web server’s document root directory, not the
WCS Stores’s document root. To correct this problem, you also need to modify
the original source of programs.

Do the following steps to have the web server serve web file resources:

1. The two file servlets are enabled by default in WCS V5.1. Disable them by
WebSphere Administrative Domain -> expand <node your hostname> ->
expand WebSphere Commerce Server - <your instance name> -> Click on
the servlet engine WCS Web Container -> WCS Stores (or WCS Tools)->
Right click WCS File Serving Servlet. See Figure 5-28 on page 125.
124 WCS V5.1 Performance Tuning

Figure 5-28 Disabling File Servlet

2. Create a directory, for example, /production/images, and copy the picture.gif
file into it.

3. Edit the IHS configuration file and add an alias entry for the directory you
have created. For example:

Alias /images /production/images

You need to stop and restart the IHS server processes.

You could repeat the step 2 and 3 for other web files (HTML files, JSP files
and so on).

4. Edit the banner.jsp and change the path to the picture.gif file from
‘images/picture.gif’ to ‘/images/picture.gif’.
 Chapter 5. Tuning WebSphere Application Server 125

5.10 HttpSessions in JSP
This section gives a little JSP programing tip that will help performance. By
default, JSP files create HttpSessions. This is in compliance with J2EE to
facilitate the use of JSP implicit objects, which can be referenced in JSP source
and tags without explicit declaration. HttpSession is one of those objects. If you
do not use HttpSession in your JSP files, you can save some performance
overhead with the following JSP page directive:

<%@ page session="false"%>
126 WCS V5.1 Performance Tuning

Chapter 6. Tuning Web Server

The purpose of this chapter is to describe some of the configuration settings that
should be used when implementing the IBM HTTP Server V1.3.12.1 (IHS), which
is based on the popular open standards-based Apache Web server.

The following provides a methodology to be used while tuning the performance
of IHS and the actual settings that work best under WebSphere Commerce Suite
(WCS) environment. However, as configuration choices may differ case by case,
your settings should be tested with each individual application that will be run on
the server. Keep in mind that changing the value of one directive can have a
negative effect on other directives, so we recommend you make changes one by
one and test the results in your system implementation.

There are several directives that we can specify in the httpd.conf file, which is
located in the in the /usr/HTTPServer/conf directory on AIX. You can use a text
editor to modify the parameters in the httpd.conf file. We have divided the
directives into five different areas:

� Process handling

� Connection

� Resource usage

� Name resolution

� Fast Response Cache Accelerator (FRCA)

6

Windows:
Check
httpd.cnf file.
© Copyright IBM Corp. 2001 127

6.1 Process handling
Parameters belonging to this category are primarily related to the httpd
processes.

6.1.1 MaxClients
This parameter limits the total number of simultaneous HTTP requests that IHS
can process. Because IHS uses one child server process for each HTTP
request, this limits the number of child server processes that are able to run
simultaneously. The default value is 150 and maximum value is 2048.

The value of this directive can significantly impact the performance of your
applications, particularly if it is too high. We have seen that the speed, number of
CPU’s, and the amount of memory can have an effect on the overall performance
of the system. The optimum value depends on your application and your exact
machine configuration. In general we suggest the following:

� For simple CPU intensive applications, use a lower MaxClients value.

� For more complex database intensive application with longer wait times, use
a slightly higher MaxClients value.

� For static HTML-only applications, use an even higher MaxClients value.

For example, exceptional performance on simple servlets such as HelloWorld
and Snoop have been achieved using values as low as 25.

Because WebSphere Commerce Suite is a database-intensive application, the
default setting of 150 may be too large. Use a number around 50 as a starting
point and adjust up or down using small increments and decrements. The goal
with adjusting this value is to always have a moderate number of HTTP requests
in the wait queue ready to be passed to the WCS’s servlet engine, but not many
waiting requests that are held for a long time.

During your tests, be sure to watch the server CPU utilization. Do not increase
the MaxClients setting if the CPU utilization reaches 100% busy and in doing so
causes the server response time to exceed your response time criteria.

Windows
ThreadPerChild

Note: Setting the value of MaxClients(or ThreadPerChild) only controls the
maximum number of HTTP servers that can be started, not how many will be
started. Set the StartServers directive equal to MaxClients when attempting to
determine the appropriate value of MaxClients for your system.
128 WCS V5.1 Performance Tuning

Example 6-1 shows how to set its value.

Example 6-1 MaxClients directive in httpd.conf file

MaxClients 50

6.1.2 StartServers
The number of child server processes that are created when IHS is initially
started. Increase this value to equal the number of MaxClients once that number
is known. This will insure that all HTTP processes are started and available. The
default value is 5. Example 6-2 shows how to set its value.

Example 6-2 StartServers directive in httpd.conf file

StartServers 50

6.1.3 MaxSpareServers
Sets the maximum number of idle httpd child processes to keep running. If there
are more idle httpd child processes running then what MaxSpareServers is
currently defined, then the extra httpd process will be killed off.

This value should also be changed to the same value of MaxClients, keeping all
processes available. The default value of MaxSpareServers is 10. Example 6-3
shows how to set its value.

Example 6-3 MaxSpareServers directive in httpd.conf file

MaxSpareServers 50

6.1.4 MinSpareServers
Sets the minimum number of idle httpd child processes. If there are fewer than
MinSpareServers, then additional httpd child processes will be created at a
maximum rate of 1 per second. If there are more than MaxSpareServers, then
the parent process kills off the excess child processes. The default value of
MinSpareServers is 5. Example 6-4 on page 130 shows how to set a value for
MinSpareServers.
 Chapter 6. Tuning Web Server 129

Example 6-4 MinSpareServers directive in httpd.conf file

MinSpareServers 5

The three directives above can also impact your application performance. For
optimum performance, first determine the appropriate value of MaxClients, then
keep the MaxClients, the StartServers and the MaxSpareServers directives
equal so that CPU is not expended creating and destroying httpd child server
processes.

6.1.5 MaxRequestsPerChild
This parameter sets the maximum number of requests that can be handled by
each child httpd process. Once this value is reached, the httpd child process
terminates. One of the intentions of this parameter is to limit the lifetime of an
httpd client process in order to prevent it from using too much memory resource
in case of memory leaks. Set this value to a fairly high number to avoid abrupt
termination of transactions. The default value is 10000. Setting this parameter is
shown in Example 6-5.

Example 6-5 MaxRequestsPerChild directive in httpd.conf file

MaxRequestsPerChild 10000

6.1.6 ListenBacklog
This parameter sets the maximum length of the queue of pending connections
from the clients. Generally no tuning is needed or desired. However, on some
systems it is desirable to increase this when under a TCP SYN flood attack.

This will often be limited to a smaller number by the operating system. This
varies from operating system to operating system. Also note that many operating
systems do not use exactly what is specified as the backlog, but use a number
based on (but normally larger than) what is set. The default value is 511.
Example 6-6 shows how to set its value.

Example 6-6 ListenBacklog directive in httpd.conf file

ListenBacklog 511

130 WCS V5.1 Performance Tuning

6.2 Connection
These directives deal with the persistent connection feature of the HTTP/1.1
specification. With HTTP/1.0, each HTTP session establishes a new TCP
connection. If your home page has a lot of images, you will need to establish
TCP connections many times to send all data for one page. The persistent
connection feature is designed to avoid this behavior. After one session is
finished, the connection still remains and the next request can re-use the
connection. If IHS gets an HTTP/1.1 request, IHS can re-use the connection until
it receives the connection close request.

6.2.1 KeepAlive
Whether or not to allow persistent connections (more than one request per
connection). Set to "off" to deactivate. Default is on. Example 6-7 shows how to
set KeepAlive.

Example 6-7 KeepAlive directive in httpd.conf file

KeepAlive ON

6.2.2 KeepAliveTimeout
Number of seconds to wait for the next request. Default value is 15. To avoid
waiting too long for the next request, you can specify the number of seconds to
wait (Example 6-8). Once the request has been received, the TimeOut directive
will apply.

Example 6-8 KeepAliveTimeout directive in httpd.conf file

KeepAliveTimeout 15

6.2.3 MaxKeepAliveRequests
The maximum number of requests to allow during a persistent connection. Set to
0 to allow an unlimited number. See Example 6-9.

Example 6-9 MaxKeepAliveRequests directive in httpd.conf file

MaxKeepAliveRequests 0

 Chapter 6. Tuning Web Server 131

6.2.4 TimeOut
Sets the number of seconds that IHS waits for these three events:

� Time taken to receive a GET request

� Time taken between receipt of TCP packets on a POST or PUT request

� Time taken between acknowledgments on transmissions of TCP packets in
responses

Default value is 300 (Example 6-10).

Example 6-10 TimeOut directive in httpd.conf file

TimeOut 300

6.3 Resource Usage
The following directives restrict the amount of system resource usage by httpd
child processes. The directives explained in this section are not included in the
default httpd.conf configuration file, as they are normally not used because they
can be specified at the operating system level, if required.

6.3.1 RLimitCPU
This parameter controls the number of seconds per process. This directive takes
one or two parameters. The first parameter sets the soft resource limit for all
processes and can be specified as a number or “max.” The second parameter
can be specified only as “max.” The “max” means the maximum resource limit
allowed by the operating system.

Note: If your Web site is busy, you should set a very small KeepAliveTimeout
such as 2 or 3 because if a browser does not send a connection close request,
IHS keeps the connection open until the period of time specified in the
KeepAliveTimeout directive. If you specify a large number, it blocks the system
resources if no requests are submitted.

Note: These directives should only be used when the values need to be set
lower than what the operating system permits.
132 WCS V5.1 Performance Tuning

6.3.2 RLimitMEM
This parameter sets the number of bytes per process. This directive also takes
one or two parameters. The first parameter sets the soft resource limit for all
processes and can be set to a number or “max”. The “max” indicates to the
server that the limit should be set to the maximum resource limit allowed by the
operating system. The second parameter specifies the limit allowed by the
operating system.

6.3.3 RLimitNPROC
This parameter controls the maximum number of simultaneous processes per
use. This directive also takes one or two parameters. The first parameter sets the
soft resource limit for all processes, and the second parameter sets the
maximum resource limit similar to the above two directives. For the case of CGI
processes running under the same User ID, (UID) as the Web server, which is
the normal case, the limitation set with this directive restricts the number of
processes the server itself can create by forking. Thus, it might limit a server’s
ability to create new httpd processes.

6.4 Name resolution
The following directive controls whether DNS lookups should be performed for
each HTTP client connection. The default value is set to off in order to save the
network traffic for those sites that don't truly need the reverse lookups done. It is
also better for the end users because they don't have to suffer the extra latency
that a lookup entails. Heavily loaded sites should leave this directive off because
DNS lookups can take considerable amounts of time and adversely effect system
performance.

6.4.1 HostnameLookups
Enables or disables DNS lookups to be performed such that host names (rather
than IP addresses) can be logged. The values allowed are On, Off, or Double.
The value Double refers to doing a double-reverse DNS lookup. That is, after a
reverse lookup is performed, a forward lookup is then performed on that result
where at least one of the IP addresses in the forward lookup must match the
original address. To increase performance, you should set the
HostnameLookups directive to Off, which is the default setting (Example 6-11).

Example 6-11 HostnameLookups directive in httpd.conf file

HostnameLookups Off

 Chapter 6. Tuning Web Server 133

6.5 Effect of using Fast Response Cache Accelerator
Fast Response Cache Accelerator (FRCA) provides a kernel level cache to store
static HTML documents and images. However, there are limitations when using
FRCA. FRCA can cache only static contents. In other words, dynamic contents
generated by servlets, JSPs, and EJBs are not cached by FRCA. FRCA does not
support protected pages, POST method, or any pages over SSL connections.

The degree of performance gain brought by FRCA depends on the amount of
static HTML pages on your site. If your web site uses a large amount of static
contents, the advantages of using FRCA will be substantial. In that case, not only
does FRCA help performance by caching the static contents in memory, but also
provides a way to avoid using resource-consuming file serving servlets. When
most of the pages returned by WCS are dynamic, the use of the FRCA will have
little or negligible effect.

By default FRCA is not configured during WCS installation. The following are the
basic steps for setting up FRCA for AIX for use with static content.

To use FRCA, you need to install the http_server.frca fileset. Then configure AIX
for FRCA. During the AIX FRCA configuration, the Network Buffer Cache options
will be requested, which can be obtained by using the no command.

Setting Network Buffer Cache options:

� nbc_limit

Sets the maximum size of the network buffer cache in KB. This value should
not be set higher than 1/2 the value of thewall, which you can get with no -a
command.

� nbc_max_cache

Sets the maximum size of a cache object that will be allowed in the Network
Buffer Cache.

� nbc_min_cache

Sets the minimum size of a cache object that will be allowed in the Network
Buffer Cache.

After you set the Network Buffer Cache options, you can load the Fast Response
Cache Accelerator into the AIX kernel. The command frcactrl load will activate
the FRCA kernel. You have to load it before IHS is started. By default, IHS is
started automatically when AIX is booted. If you do not want to start IHS
automatically, you can comment out the line that starts with ihshttpd in the
/etc/inittab.
134 WCS V5.1 Performance Tuning

To activate the FRCA module, the following lines in Example 6-12 should be
added to the IHS configuration file (/usr/HTTPServer/conf/httpd.conf by default):

Example 6-12 LoadModule ibm_afpa_module directive in httpd.conf file

#
LoadModule ibm_afpa_module libexec/mod_ibm_afpa.so
AddModule mod_ibm_afpa.c
#

There are several directives that are related to FRCA:

AfpaBindLogger [-1, 0, 1, ..., n]: allows you to bind the FRCA logging thread to a
specific CPU on a multiple processor machine.

AfpaCache on | off: allows you to turn FRCA on or off for a particular scope such
as a directory.

AfpaEnable enables the FRCA to listen on the TCP port specified by the Port
directive, or the default port 80.

AfpaLogFile file_path_and _name log_format: sets the FRCA log file name,
location, and format. The supported log formats are:

– CLF: Command Log Format

– ECLF: Extended Common Log Format

– V-CLF: Common Log Format with virtual host information

– V-ECLF: Extended Common Log Format with virtual host information

– BINARY: Binary Log Format with virtual host information

AfpaSendServerHeader true | false: specifies whether or not FRCA will send the
HTTP Server header in the response.

AfpaLogging on | off: turns FRCA logging on or off.

AfpaMaxCache [size]: specifies the maximum file size in bytes that can be added
to the FRCA cache.

AfpaMinCache [size]: specifies the minimum file size in bytes which can be
added to the FRCA cache.

AfpaRevalidationTimeout [seconds]: sets the time interval for files cached to be
revalidated.

Note: The LoadModule and AddModule directives should be the first dynamic
modules listed in the configuration.
 Chapter 6. Tuning Web Server 135

In our test environment, we specified the AFPA configuration directives in the
/usr/HTTPServer/conf/httpd.conf file. See Example 6-13.

Example 6-13 FRCA configuration settings in httpd.conf file

#
LoadModule ibm_afpa_module
AddModule mod_ibm_afpa.c
AfpaEnable
AfpaCache on
AfpaLogFile /usr/HTTPServer/logs/afpa-log V-ECLF
AfpaMinCache 0
AfpaMaxCache 100000
AfpaLogging on
AfpaBindLogger -1
AfpaSendServerHeader true
#

Then, start IHS with the /usr/HTTPServer/bin/apachectl start command.
There are three ways to monitor FRCA:

� Fast Response Cache Accelerator Log:

FRCA log can be used to observe files being served out of the cache.

� netstat

By using the command netstat -c, you can observe the current status of the
Network Buffer Cache.

� frcactrl

using the command frcactrl stats you can observe statistics from the
FRCA kernel such as the total number of requests handled and the total
number of successful cache hits.

We tested FRCA with two scenarios. One is for HTML static documents and the
other is for a dynamic document that is created by a servlet. For the HTML static
document test case, we accessed the welcome page, which includes several
GIF files. We saw significant performance improvements while running FRCA. In
our environment, using FRCA allowed twice as many HTTP requests than
without FRCA. In addition the CPU utilization of the Web server machine was
lower than the non-FRCA case. With the frcactrl stats command, we noticed
that our HTTP requests hit the cached data.

The other test case for dynamic content showed that using FRCA did not
improve performance. From this test result, we can tell that FRCA does not
cause any performance increase for dynamic content. We also observed that
FRCA would not negatively affect the performance of dynamic contents.
136 WCS V5.1 Performance Tuning

Appendix A. Performance Monitoring
Tools

This appendix provides summary descriptions of a set of tools that provide
varying degrees of assistance in determining the performance of WCS, in
addition to highlighting possible issues related to the resources used by WCS
that have some impact on runtime performance.

All the tools described have already been documented in other IBM publications,
and references to these publications are provided accordingly as part of each
tool’s description.

The tools discussed are as follows:

� WebSphere Commerce Suite Performance Monitor

� WAS Resource Analyzer

� WebSphere Site Analyzer

� Page Detailer

� AIX Tools

� DB2 Tools

� Silk Preview

A

© Copyright IBM Corp. 2001 137

WCS Performance Monitor
The WCS Performance Monitor is installed as part of the WCS Administration
subsystem. The information analyzed is a subset of the performance data
generated by WAS as part of the internal instrumentation of WAS components,
and includes the following data points:

� The number of occurrences of a given task activity

� The duration of the executing task activity

� The maximum and minimum times for task execution

� The average time measured by the sum of the squares for the values
returned

� A measure of the standard deviation of the values returned for task
measurements

� Identification of access counts by store

� The last access time

� The last response time

The WCS Performance Monitor provides the option of printing the generated
results or saving the information in an HTML formatted file for viewing in a web
browser.

The WCS Performance Monitor is not enabled by default. To use it, follow the
below steps.

1. Invoke WCS configuration manager. Then select Instance List -> <instance
name> -> Components -> PerfMonitor, select Enable Component, and select
Apply as shown in Figure A-1 on page 139.
138 WCS V5.1 Performance Tuning

Figure A-1 Enabling WCS PerfMonitor Component

2. From the WebSphere Application Server Administration Console, stop and
re-start the instance.

3. Open the Commerce Suite Administration Console by pointing your browser
to http://<hostname>/adminconsole as shown in Figure A-2 on page 140.
The default logon id and password is set to wcsadmin. You may need to
change the password when you first log on.
 Appendix A. Performance Monitoring Tools 139

Figure A-2 Logging on to WCS admin console

4. Click Site -> Performance -> Statistics in the menu bar. The Performance
Monitor window will pop up (Figure A-3 on page 141). Click Start monitor.
140 WCS V5.1 Performance Tuning

Figure A-3 Starting WCS Performance Monitor

5. The performance values will be collected during your test. An example screen
is shown in Figure A-4 on page 142. Click Refresh to view updated data. You
can also specify refresh interval.
 Appendix A. Performance Monitoring Tools 141

Figure A-4 Sample output of WCS Performance Monitor

For further information on the WCS Performance Monitor, refer to chapter 8 of
IBM WebSphere CommerceSuite Site Administrator Version 5.1.

WAS Resource Analyzer
The Resource Analyzer is a stand-alone performance monitor for WebSphere
Application Server Advanced Edition. It is available as a technology preview
product, and is not included in the base WebSphere Application Server product
CD. The download link URL for obtaining the WAS Resource Analyzer is:

http://www-4.ibm.com/software/webservers/appserv/download_ra.html
142 WCS V5.1 Performance Tuning

Because Resource Analyzer is a pure-Java based client, the same code can be
run on NT as well as Unix platforms. And it can connect across platforms to the
WebSphere Administrative Server running locally or on a remote machine. The
Resource Analyzer retrieves performance data by periodically polling the
WebSphere Administrative Server. The collected information provides the basis
for the statistics analysis used by the WCS Performance Monitor.

The Analyzer collects and reports performance data for the following resources
of WebSphere Application Server:

� WebSphere runtime

Reports memory used by a process as reported by the JVM. Examples are
the total memory available and the amount of free memory for the JVM.

� Object Request Broker (ORB) thread pools

Reports information about the pool of threads an application server uses to
process remote methods. Examples are the number of threads created and
destroyed, the maximum number of pooled threads allowed, and the average
number of active threads in the pool.

� Database connection pools

Reports usage information about connection pools for a database. Examples
are the average size of the connection pool (number of connections), the
average number of threads waiting for a connection, the average wait time in
milliseconds for a connection to be granted, and the average time the
connection was in use.

� Enterprise beans

Reports load values, response times, and lifecycle activities for enterprise
beans. Examples include the average number of active beans and the
average number of methods being processed concurrently.

� Enterprise bean methods

Reports information about an enterprise bean's remote interfaces. Examples
include the number of times a method was called and the average response
time for the method.

� Enterprise bean object pools

Reports information on the size and usage of a cache of bean objects.
Examples include the number of calls attempting to retrieve an object from a
pool and the number of times an object was found available in the pool.

� Transactions

Reports transaction information for the container. Examples include the
average number of active transactions, the average duration of transactions,
and the average number of methods per transaction.
 Appendix A. Performance Monitoring Tools 143

� Servlet engines

Reports usage information for Web applications, servlets, JavaServer Pages
(JSPs), and HTTP sessions. Examples include the average number of
concurrent requests for a servlet, the amount of time it takes for a servlet to
perform a request, the number of loaded servlets in a Web application, and
the average number of concurrently active HTTP sessions.

Figure A-5 shows the monitoring screen for Resource Analyzer.

Figure A-5 Resource Analyzer component measurements

For further information on the Resource Analyzer, refer to chapter 25 of
WebSphere Commerce Suite V5.1 Handbook, SG24-6167.
144 WCS V5.1 Performance Tuning

WebSphere Site Analyzer
WebSphere Site Analyzer uses Web server logs to analyze site activity. From
these logs it can determine who the users were, what pages and resources were
accessed, error codes received, and other useful information. There are several
log formats being used by various web servers, but NCSA Combined log format
should be used in case IBM HTTP Server is being used in conjunction with Site
Analyzer.

Site Analyzer provides the following features:

� Commerce analysis features

Site Analyzer provides commerce related analysis by reading the commerce
data from the commerce server database. Using Site Analyzer, you can
respond to the following questions:

– Which products did users most often add, or least often add to their
shopping cart?

– Which products were most often viewed, and which products were least
often viewed?

– Which products were looked at most by a single user?

� Operational analysis features

Site Analyzer will scan your web site and report which links are broken and
why they are broken. It can also report the response time required to retrieve
each resource, (e.g. page, image, etc.). Site Analyzer will visually show you
your web site’s hierarchical structure through a graphic tree view
representation.

� Business analysis features

Site Analyzer can show you the top IP address accessing your site, or given
an IP address, what pages the visitor accessed. Site Analyzer can categorize
visitor sessions by domain or subdomain, allowing you to see, for example, if
your users are coming from .edu, .com, .org, etc. Site Analyzer can also tell
you what browsers and what platforms your visitors are using. Site Analyzer
also keeps track of the referring web site for each of your visitors so you can
see which advertisements are generating the most traffic to your site.
 Appendix A. Performance Monitoring Tools 145

� Reporting features

Within Site Analyzer, you can establish categories for data based on patterns.
For example, you may categorize a subset of your site’s pages into a ‘new
products’ category, then report on the number of hits on your ‘new products'.
Secondly, if you want to report on page return codes by browser or platform
type, you can aggregate return code, browser, and platform together by using
Site Analyzer. Thirdly, the tool provides various forms of graphs to display
your data, such as pies, bars, lines, in 2D or 3D.

� Traffic analysis features

Because we are interested in how Site Analyzer can be used for performance
tuning, we will limit the discussion to Traffic analysis features.

Traffic analysis
This function processes the HTTP logs of all major web servers, providing
measurements such as the number of visits, number of pages viewed, and total
hits to the site. Traffic analysis also provides significant measurements in the
area of customer analysis such as where visitors come from (top domains and
referrals), what they do while on the site, and what browser they are running.
Using the default set of data options, administrators can collect information such
as number of page views, most commonly used browsers, most commonly used
platforms, top referring sites, and number of visits.

� Visitor / Session Analysis

Site Analyzer employs a sophisticated algorithm to group hits together to
calculate visitor sessions. Criteria include date/time, IP address, cookie,
referral URL, user agent, etc. As a result, Site Analyzer’s session analysis is
more accurate than common standards because it uses more criteria.

� Dynamic Web Site Support

Site Analyzer allows you to track activity to your dynamic web pages based
on different parameter values to pages served dynamically by server side
programs such as servlets.

� Trending Analysis

With Site Analyzer, you can accumulate web traffic data over time. You can
then report on traffic measurement trends, such as by hour of the day or by
day of the week.
146 WCS V5.1 Performance Tuning

� Advanced Filtering

During processing of a web site’s traffic log, you may wish to exclude specific
records, or include only certain records based on criteria such as IP address,
URL pattern, user agent (browser, platform), status code, referral URL
pattern, cookies, etc. Site Analyzer contains advanced filtering support
allowing lists of multiple wild card pattern matches to exclude or include
records.

� Server Cluster Support

Site Analyzer supports server clusters by analyzing the servers’ multiple log
files at once, or one at a time by merging the data together to create a
complete usage history of your web site.

Integration with WCS
Site Analyzer provides a tool that can extract data from the Commerce Suite
database and create a log that can then be analyzed. Currently this tool only
supports WebSphere Commerce Suite V4.1, but a fix code for WCS V5 is in test
and will be available soon on
http://www-4.ibm.com/software/webservers/siteanalyzer/efix.html. There
is also a limitation in terms of supported database. Even though WCS can be
installed with either DB2 or Oracle, Site Analyzer only supports analyzing data
extracted from DB2.

For more information about WebSphere Site Analyzer, refer to Up and Running
with WebSphere Site Analyzer, SG24-6169.

Page Detailer
Page Detailer monitors the end user's interactions as pages are requested and
retrieved, reporting:

� Overall response time

� Detailed timing broken down into individual page components

� Size of individual page components

� Identity of each item on a page

The details revealed can be used to identify areas where performance could be
improved to enhance the end user experience.
 Appendix A. Performance Monitoring Tools 147

Page Detailer is shipped as a part of IBM WebSphere Studio Advanced Edition.
WebSphere Studio can be installed on Windows 95, Windows 98, Windows NT
Workstation or Server V4.0, or Windows 2000 Professional or Server or
Advanced Server. But Page Detailer can be run independently of the other
components of WebSphere Studio.

The design of the communication protocols used by browsers for Web access
creates times when either the Web browser or the Web server must wait for
responses from other components. The more time spent in these protocol waits,
the longer the delay site visitors may experience while waiting for page content.
The 'farther' the browser is from the server, the greater the likelihood of delays
due to intermediate links or devices in the path between the browser and the
server. A delay could be added by any hardware or software component,
including components or subsystems of the browser or the server itself. Page
Detailer is an excellent tool for revealing these delays.

The following shows a brief walkthrough of Page Detailer. For more information
about Page Detailer, refer to
http://www-4.ibm.com/software/webservers/studio/doc/v35/pagedetailer/EN
/HTML/index.html

To start the Page Detailer, click Programs -> IBM WebSphere -> Studio 3.5 on
the system that has WebSphere Studio. You will be presented with a Page
Detailer window as shown in Figure A-6.

Figure A-6 Page Detailer window

Start a browser and point to any Web page, for example http://www.ibm.com.
The Page Detailer automatically captures the timing of all the downloaded files
and produces a graphical picture of the operation as shown in Figure A-7 on
page 149.
148 WCS V5.1 Performance Tuning

Figure A-7 Page Detailer result for http://www.ibm.com

Legend
Select View -> Legend to see an explanation of the color coding and the icons
for each measured metric. A sample legend is shown in Figure A-8.

Figure A-8 Page Detailer Legend

Detailed analysis
Click on Details to see the download time and size of each file of the Web page.
A sample output is shown in Figure A-9 on page 150.
 Appendix A. Performance Monitoring Tools 149

Figure A-9 Page Detailer details

You can see a summary, the totals, and the events using View -> Properties.
You can save the result of the analysis as a .PDE file.

Export
The chart data can be exported as an XML file, a text file, or a comma separated
value (CSV) file. CSV files can be imported into spreadsheet programs. The
result files are stored under the D:\WebSphere\Studio35\PageDetailer with
names:

pd_export.xml

pd_export.txt

pd_page.csv, pd_item.csv, pd_header.csv, pd_event.csv

The export directory can be tailored using Edit -> Preferences.
150 WCS V5.1 Performance Tuning

AIX monitoring tools

The majority of performance problems related to application execution within a
given platform system environment falls into four main categories:

� Network

� CPU

� Disk I/O

� Memory

Tools to monitor general system performance metrics
There are two utilities that could be used to display overall system performance
metrics.

topas
The topas command reports selected statistics about the activity on the local
system. topas is a utility provided by IBM, and is available on the AIX CD.

The top two lines at the left of the output show the name of the system the topas
program runs on, the date and time of the last observation, and the monitoring
interval. Following this is a section that lists the CPU utilization in both numeric
and block-graph format. The second part contains five subsections of statistics,
EVENTS/QUEUES, FILE/TTY, PAGING, MEMORY, and PAGING SPACE. The
variable part of the topas display can have one, two, or three subsections. If
more than one appears, the subsections are always shown in the following order:

� Network interfaces

� Physical disks

� Processes

Restriction: The performance monitoring tools and techniques are applicable
only to AIX.

Important: Install the perfagent.tools fileset on your AIX system to use topas.
 Appendix A. Performance Monitoring Tools 151

While the topas program is running, it accepts one-character subcommands.
Each time the monitoring interval elapses, the program checks for one of the
following subcommands and responds to the action requested.

a Show all of the variable sections (network, disk, and process) if space
allows.

d Show disk information.

h Show the same help screen as displayed by the -h command line
argument.

n Show network interfaces information.

p Show process information.

q Quit the program.

A sample output of topas is shown in Example A-6 on page 159.

monitor
The monitor utility provides an ASCII display of a collection of system
performance indicators that is a composite of information provided from other
tools such as vmstat, iostat, and netstat. It is provided as a freeware on the
Internet. It can be downloaded from
ftp://aixpdslib.seas.ucla.edu/pub/monitor/RISC/4.3/exec/monitor.2.1.5.t
ar.Z.

The monitor also includes the top utility, which provides a rolling display of top
CPU-using processes on a Unix system. It also displays other information about
the overall health of the system, including load averages and memory utilization.

Example: A-1 Sample output of monitor

AIX System monitor v2.1.5 13aug1998: wcs5.itsc.austin.iSun Jun 3 17:04:17 2001
Uptime: 30 days, 22:23 Users: 0 of 0 active 0 remote 00:00 sleep time
CPU: User 0.1% Sys 1.2% Wait 0.0% Idle 98.7% Refresh: 6.40 s
0% 25% 50% 75% 100%

Runnable (Swap-in) processes 0.00 (0.94) load average: 0.02, 0.02, 0.02

Memory Real Virtual Paging (4kB) Process events File/TTY-IO
free 2048 MB 204 MB 3.6 pgfaults 32 pswitch 0 iget
procs 16774165 MB 3 MB 0.0 pgin 36 syscall 1 namei
files 2026 MB 0.0 pgout 2 read 0 dirblk
total 1024 MB 208 MB 0.0 pgsin 0 write 916 readch
IO (kB/s) read write busy% 0.0 pgsout 0 fork 48 writech
hdisk0 0.0 0.0 0 0 exec 0 ttyrawch
hdisk1 0.0 0.0 0 0 rcvint 0 ttycanch
152 WCS V5.1 Performance Tuning

cd0 0.0 0.0 0 0 xmtint 48 ttyoutch
 0 mdmint

 Netw read write kB/s
 tr0 0.1 0.1
 lo0 0.0 0.0
 PID USER PRI NICE SIZE RES STAT TIME CPU% COMMAND
 774 root 127 21 8k 7796k run 24+22:01 49.9/80.6 Kernel (wait)

Tools to monitor network
An easy way to tell if the network is affecting overall performance is to compare
those operations that involve the network with those that do not. If you are
running a program that does a considerable amount of remote reads and writes
and it is running slowly, but everything else seems to be running normally, then it
is probably a network problem.

netstat -m
netstat -m displays the statistics recorded by the mbuf memory-management
routines. Example A-2 shows sample output.

� What to watch

Check if there is any non-zero values in the requests for mbufs denied section
and in the failed column for each CPU. These values should be zero.

� Action

Increase the value of thewall parameter by:

no -o thewall=New_value

If the requests for mbufs denied is not displayed, enable the statistics by:

no -o extendednetstats=1

Example: A-2 Sample output of netstat -m

netstat -m
29 mbufs in use:
16 mbuf cluster pages in use
71 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
 Appendix A. Performance Monitoring Tools 153

32 245 182806 0 0 523 1226 0
64 95 7970 0 0 33 613 0
128 210 15974 0 0 78 306 0
256 241 12306567 0 0 447 736 0
512 100 934557 0 0 36 76 5
1024 83 398269 0 0 185 191 3201
2048 0 242008 0 0 190 191 487
4096 67 1847877 0 0 102 230 0
8192 5 68407 0 0 0 19 0
16384 1 70479 0 0 34 46 0
65536 1 1 0 0 0 1535 0

By type inuse calls failed delayed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

nestat -i
Use the netstat -i command to monitor the status of your network interface
during the experiment. You may find that the system is dropping packets during a
send by looking at the Oerrs output.

� What to watch:

1. If the number of errors during input packets is greater than 1 percent of the
total number of input packets (from the command netstat -i); that is,

Ierrs > 0.01 x Ipkts

Then run the netstat -m command to check for a lack of memory. Verify the
check points described in Section “netstat -m” on page 153. Increase the
size of thewall when necessary.

2. If the number of errors during output packets is greater than 1 percent of the
total number of output packets (from the command netstat -i); that is,

Oerrs > 0.01 x Opkts

Then increase the transmit queue size (xmt_que_size) for that interface. The
size of the xmt_que_size could be checked with the following command:

lsattr -El entn (or tokn where n=0,1,2, and so on)

Use the following command to alter the queue size:

chdev -l ent0 -a xmt_que_size=<new_value>
154 WCS V5.1 Performance Tuning

3. If the collision rate is greater than 10 percent, that is,

Coll / Opkts > 0.1

Then there is a high network utilization, and a reorganization or partitioning of
the network may be necessary. Use the netstat -v command to determine
the collision rate.

netstat -v
The netstat -v command displays the statistics for each network
interface-specific device driver that is in operation. Every interface has its own
specific information and some general information.

� What to watch:

Check for non-zero values in any error counts in the netstat -v output.

� Action:

– Max Packets on S/W Transmit Queue

Maximum number of outgoing packets ever queued to the software
transmit queue. An indication of an inadequate queue size is if the
maximum transmits queued equals the current queue size
(xmt_que_size). Check the current size of the queue, using lsattr -El
<adapter_name> command, then increase the size of xmt_que-size using
chdev -l <adapter_name> -a xmt_que_size=<new_value> command.

– No mbuf Errors

Number of times that mbufs were not available to the device driver. If the
mbuf pool for the requested size is empty, the packet will be discarded.
Increase the parameter thewall by no -o thewall = <new_value>.

Example A-3 shows the Token-Ring part of the netstat -v command. The most
important output fields are highlighted.

Example: A-3 Sample output of netstat -v

TOKEN-RING STATISTICS (tok0) :
Device Type: IBM PCI Tokenring Adapter (14103e00)
Hardware Address: 00:20:35:7a:12:8a
Elapsed Time: 29 days 18 hours 3 minutes 47 seconds
Transmit Statistics: Receive Statistics:

Note: The changed network interface must be down and detached with
TCPIP services stopped. Alternatively, add the -P flag to update the
database only and reboot for the changes to take effect.
 Appendix A. Performance Monitoring Tools 155

-------------------- -------------------
Packets: 1355364 Packets: 55782254
Bytes: 791555422 Bytes: 6679991641
Interrupts: 902315 Interrupts: 55782192
Transmit Errors: 0 Receive Errors: 1
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 182
S/W Transmit Queue Overflow: 42
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 18878 Broadcast Packets: 54615793
Multicast Packets: 0 Multicast Packets: 569
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 2 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 2 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running

AlternateAddress 64BitSupport ReceiveFunctionalAddr
16 Mbps

TCP/UDP Message Buffers
AIX has four parameters that specify the system default socket buffer sizes for
sending or receiving data. They are tcp_sendspace, tcp_recvspace,
udp_sendspace, and udp_recvspace. They affect the window sizes used by TCP
or UDP. In general, increasing those socket buffer sizes improves performance
over Standard Ethernet and Token-Ring networks. However, lower bandwidth
networks, such as Serial Line Internet Protocol (SLIP), or higher bandwidth
networks, such as Serial Optical Link, should have different optimum buffer
sizes. The optimum buffer size is the product of the media bandwidth and the
average round-trip time of a packet.

� What to watch
156 WCS V5.1 Performance Tuning

If data transfers appear sluggish, determine which protocol is being used and
increase either the TCP or UDP (broadcast) message buffers accordingly.
The defaults for these settings are shown in Example A-4 (derived from an
AIX 4.3.3 system).

Example: A-4 Using no -a

no -a | grep space

tcp_sendspace = 16384
tcp_recvspace = 16384
udp_sendspace = 9216
udp_recvspace = 41920
no -a | grep space

� Action

Increase the appropriate buffer size by:

 no -o <option_name> = <new_value>

CPU tuning

ps
The ps command is used to locate the processes dominating CPU usage. The
command writes the current status of active processes and (if the -m flag is
given) associated kernel threads to standard output. The command ps aux
provides a set of resource utilization metrics including the utilization ratio of CPU
and memory.

� What to watch

%CPU The percentage of time the process has used the CPU
since the process started. The value is computed by
dividing the time the process uses the CPU by the elapsed
time of the process.

%MEM The percentage of real memory used by this process

COMMAND name of the command (process)

� Action

Identify which process is using most of CPU time. Determine whether this
usage pattern is valid. For WAS and DB2, consider decreasing the number of
agent processes.
 Appendix A. Performance Monitoring Tools 157

A sample output from the ps utility is shown in Example A-5.

Example: A-5 Output from ps aux command

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 516 49.0 1.0 8 9952 - A 18:11:13 831:12 kproc
root 774 48.8 1.0 8 9952 - A 18:11:13 826:36 kproc
root 15506 1.3 22.0 167584 166176 pts/0 A 18:25:52 22:21
/usr/IBMWebAS/jav
root 21682 0.2 5.0 41460 41640 pts/1 A 18:29:10 2:46
/usr/IBMWebAS/jav
nobody 11166 0.2 0.0 3588 1216 - A 07:48:23 0:06 /usr/HTTPServer/b
db2inst1 20640 0.1 0.0 2852 2712 - A 18:26:42 1:09 db2agent (RMALL)
db2inst1 18062 0.1 0.0 2872 2748 - A 18:25:07 1:06 db2agent (RMALL)
db2inst1 20900 0.1 0.0 2900 2752 - A 18:28:17 0:57 db2agent (RMALL)
root 0 0.0 1.0 12 9956 - A 18:11:13 0:21 swapper
root 1548 0.0 1.0 64 10008 - A 18:11:13 0:21 kproc
root 3396 0.0 0.0 164 188 - A 18:12:48 0:17 /usr/sbin/syncd 6
nobody 7998 0.0 0.0 3468 1216 - A 18:13:20 0:11 /usr/HTTPServer/b
nobody 8514 0.0 0.0 3508 1216 - A 18:13:20 0:11 /usr/HTTPServer/b
nobody 7740 0.0 0.0 3452 1220 - A 18:13:20 0:11 /usr/HTTPServer/b
nobody 18588 0.0 0.0 3568 1216 - A 18:28:09 0:10 /usr/HTTPServer/b
nobody 7486 0.0 0.0 3428 1216 - A 18:13:20 0:10 /usr/HTTPServer/b
nobody 8256 0.0 0.0 3488 1216 - A 18:13:20 0:10 /usr/HTTPServer/b

Note that the sequence shown in the listing generated is not presented in any
particular order, so examination of the entire output is recommended to ensure
all process entries of a given application are accounted for.

topas -p
topas can be used to list currently running processes in the order of %CPU
utilization. For example, topas -p 10 will list the top 10 processes in the order of
high CPU utilization as well as other performance metrics. A sample output of
this example is shown in Example A-6 on page 159.

Note: It is normal to see a process named kproc (PID of 516 in operating
system version 4) using CPU time. When there is no task to run during a time
slice, the scheduler of AIX assigns the CPU for that time slice to this kernel
process (kproc), which is known as the idle or wait kproc. SMP systems will
have an idle kproc for each processor.
158 WCS V5.1 Performance Tuning

� What to watch

The boldfaced column in Example A-6 shows %CPU value and the list is
arranged the order of highest %CPU value.

Example: A-6 Sample output of topas -p

Topas Monitor for host: wcs5 EVENTS/QUEUES FILE/TTY
Sun Jun 3 16:42:0 2001 Interval: 2 Cswitch 3 Readch 1505
 Syscall 4 Writech
Kernel 0.2 | | Reads 4 Rawin 0
User 0.0 | | Writes 0 Ttyout
Wait 0.0 | | Forks 0 Igets 0
Idle 99.7 |############################| Execs 0 Namei 0
 Runqueue 0.0 Dirblk 0
Interf KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 1.0
tr0 0.0 0.4 0.4 0.0 0.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 1023
 Steals 0 % Comp 57.8
topas (17820) 0.5% PgSp: 0.4mb root PgspIn 0 % Noncomp 9.1
syncd (2886) 0.0% PgSp: 0.1mb root PgspOut 0 % Client 0.5
java (23778) 0.0% PgSp:227.0m: root PageIn 0
httpd (2772) 0.0% PgSp: 3.7mb root PageOut 0 PAGING SPACE
sendmail (5578) 0.0% PgSp: 0.7mb root Sios 0 Size,MB 2048
gil (1548) 0.0% PgSp: 0.0mb root % Used 1.5
httpd (35382) 0.0% PgSp: 4.5mb nobody % Free 98.4
java (18278) 0.0% PgSp:55.0mb root
cron (6234) 0.0% PgSp: 0.3mb root
ksh (11304) 0.0% PgSp: 0.3mb root Press "h" for help screen.
 Press "q" to quit program.

sar
sar (System Activity Report) command can be used in two ways to collect
data: one is to view system data in real time, and the other is to view data
previously captured. The sar utility is helpful in determining whether the system
is constrained by CPU or disk I/O. It also provides whether the system is
balancing the workload evenly across all CPUs on an SMP system. Usage of sar
is also recommended when you need to collect history of system usage over a
period of time.

� What to watch

The following metrics are important to determine whether the workload is
CPU-bound or I/O-bound. If the sum of %usr and %sys is large, say greater
than 70%, the workload is CPU-bound. If %wio is high while %usr and %sys
remain low, the workload is I/O-bound.

%idle Reports the percentage of time the CPU or CPUs were idle
with no outstanding disk I/O requests.
 Appendix A. Performance Monitoring Tools 159

%sys Reports the percentage of time the CPU or CPUs spent in
execution at the system (or kernel) level.

%usr Reports the percentage of time the CPU or CPUs spent in
execution at the user (or application) level.

%wio Reports the percentage of time the CPU or CPUs were idle
waiting for disk I/O to complete. For system-wide statistics,
this value may be slightly inflated if several processors are
idling at the same time, an unusual occurrence.

Example A-7 shows sar output for a machine with four CPUs, with a sampling
interval of 2 seconds for 3 intervals.

Example: A-7 Sample output of sar

sar -P 0,1,2,3 2 3

AIX wcs5 3 4 000376384C00 03/14/01

11:58:30 cpu %usr %sys %wio %idle
11:58:32 0 0 0 0 100
 1 0 0 0 100

 2 0 0 0 100
 3 0 0 0 100
11:58:34 0 0 0 0 100
 1 0 0 0 100
 2 0 0 0 100
 3 0 0 0 100
11:58:36 0 0 0 0 100
 1 0 0 0 100
 2 0 0 0 100

 3 0 0 0 100

Average 0 0 0 0 100
 1 0 0 0 100
 2 0 0 0 100
 3 0 0 0 100

It should be noted that sar does introduce additional load on the system that
could compound an existing performance problem. Therefore, the sar results
should not be used as the only reference point in determining CPU utilization.
160 WCS V5.1 Performance Tuning

Disk I/O

iostat
When you suspect a disk I/O performance problem, use the iostat command.
The iostat command will break down which disks are being utilized most based
on the time the physical disks are active relative to the average transfer rates.

� What to watch

% tm_act Indicates the percentage of time that the physical disk was
active. The "disk active time" percentage is directly
proportional to resource contention and inversely
proportional to performance. In general, when the utilization
exceeds 70 percent, processes are waiting longer than
necessary for I/O to complete because most UNIX
processes block (or sleep) while waiting for their I/O requests
to complete.

Kbps Indicates the amount of data transferred (read or written) to
the drive in KB per second. This is the sum of Kb_read plus
Kb_wrtn, divided by the seconds in the reporting interval.

tps Indicates the number of I/O transfers per second that were
issued to the physical disk. A transfer is of indeterminate
size.

Kb_read Reports the total data (in KB) read from the physical volume
during the measured interval.

Kb_wrtn Reports the total data (in KB) written from the physical
volume during the measured interval.

Taken alone, there is no unacceptable value for any of the above fields.
Therefore, when you are evaluating data, look for patterns and relationships.
The most common relationship is between disk utilization (%tm_act) and data
transfer rate (tps).

� Action

Identify the busiest disk drives. Then analyze which filesystem or file
contained on the disk was most active. The filemon utility explained in Section
“filemon” on page 162 can help to find out this information. lspv -l
<hdisk_name> also displays the list of logical volumes on the drive. Look for
busy versus idle drives. Moving data from busy to idle drives can help
alleviate a disk bottleneck.
 Appendix A. Performance Monitoring Tools 161

An example of the output is shown in Example A-8.

Example: A-8 Sample output of iostat

iostat 3 3

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.2 75.7 5.2 0.7 93.6 0.5

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
hdisk0 1.1 12.2 1.7 62897 2334816
cd0 0.0 0.0 0.0 6544 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 39.0 0.0 0.0 100.0 0.0

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
hdisk0 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 39.0 0.0 0.0 100.0 0.0

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
hdisk0 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

In reading the information report generated, ignore the first collection of statistics
(highlighted in the above example), as this reflects the statistics since the system
was last rebooted.

filemon
Once the disks experiencing maximum utilization have been identified, then
determine the most active files and most active disks. The filemon utility can help
you break down which logical volume is most active as well as which files are
most active. Invoke it from the command line as follows:

filemon -o filemon.out

where filemon.out will contain the output trace information consisting of a
summary of the most active physical and logical volumes. To use filemon, install
perfagent.tools fileset on your system.
162 WCS V5.1 Performance Tuning

After waiting for an interval of time, the trace should be stopped by issuing the
trcstop command.

� What to watch

Check the list of most active files, logical volumes, and physical volumes
reported in the output report, and evaluate whether they are reasonable.

� Action

Based on the output report, figure out how to re-distribute disk I/O requests by
changing the filesystem layout.

Example A-9 shows the sample output listing generated by filemon command. In
our tests, we observed that WCS cache files were among the most active files on
the system.

Example: A-9 Sample output of filemon

Fri Apr 6 11:26:15 2001
System: AIX wcs5 Node: 4 Machine: 000BC6CD4C00

Cpu utilization: 7.2%

Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 0.1 11 19 0 libc.cat /dev/hd2:78239
 0.1 11 19 0 hosts /dev/hd4:4634
 0.1 23 23 46 activity.log /dev/hd2:325642
 0.1 7 6 0 StoreCatalogDisplay.storeId.25.storeId.25.---.htm
/dev/hd2:18710

 0.0 5 5 0
TopCategoriesDisplay.storeId.25.catalogId.1000.---.htm /dev/hd2:29426
 0.0 2 2 0 ProductDisplay.storeId.25.productId.11194.---.htm
/dev/hd2:397670
 0.0 2 2 0
CategoryDisplay.storeId.25.categoryId.10003.catalogId.1000.---.htm
/dev/hd2:411974
Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.03 1352 0 40.9 /dev/hd2 /usr
 0.02 232 0 7.0 /dev/hd6 paging
 0.01 0 312 9.4 /dev/lv_weblogs /weblogs
 0.00 0 8 0.2 /dev/hd8 jfslog
 0.00 8 0 0.2 /dev/hd4 /
 Appendix A. Performance Monitoring Tools 163

Most Active Physical Volumes
--
--
 util #rblk #wblk KB/s volume description
--
 0.06 1592 320 57.8 /dev/hdisk0 N/A

Memory

vmstat
The vmstat command is one of the most helpful tools in determining if the system
is short of physical memory. It summarizes the total active virtual memory used
by all of the processes in the system. It also reports the statistics regarding
kernel threads, disk, and CPU activity. The output format for the command is
shown below (Example A-10).

Example: A-10 Sample output of vmstat

vmstat 2

kthr memory page faults cpu
----- ----------- ------------------- ----------------- -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 16998 14612 0 0 0 0 0 0 101 10 8 55 0 44 0
0 1 16998 14611 0 0 0 0 0 0 411 2199 54 0 0 99 0
0 1 16784 14850 0 0 0 0 0 0 412 120 51 0 0 99 0
0 1 16784 14850 0 0 0 0 0 0 412 88 50 0 0 99 0

The columns highlighted in the following list provide an indication where most
CPU cycles are being spent:

r Average # of kernel threads queued for execution in the process run
queue per second.

b Average # of kernel threads awaiting I/O resources or for a page thread
to be paged in.

avm The average number of 4 K pages that are allocated to paging space.
The number in the avm field divided by 256 will yield the approximate
number of megabytes (MB) allocated to paging space system-wide.

fre The average number of free memory pages. A page is a 4 KB area of
real memory.
164 WCS V5.1 Performance Tuning

pi Details the number (rate) of pages paged in from paging space. Paging
space is the part of virtual memory that resides on disk. It is used as an
overflow when memory is overcommitted.

po shows the number (rate) of pages paged out to paging space. If the
system is reading in a significant number of persistent pages (files),
you might see an increase in po without corresponding increases in pi.

us % of CPU time spent in user mode. When in user mode a process
does not require kernel resources for execution.

sy % of CPU time spent in system mode i.e. processes that utilize kernel
resources must use do so via execution of kernel system calls.

id % of CPU time spent idle, or waiting, without pending local I/O.

wa % of CPU time spent idle with pending local disk I/O.

� What to watch

When determining if a system might be short on memory or if some memory
tuning needs to be done, run the vmstat command over a set interval and
examine the pi and po columns on the resulting report. These columns
indicate the number of paging space page-ins per second and the number of
paging space page-outs per second. For a system experiencing memory
contention, the count of disk reads of data into memory (indicated by the pi
column) and the amount written out to disk from memory (indicted by the po
column) will be consistently non-zero. Having occasional non-zero values is
not a concern because paging is the main principle of virtual memory. If
insufficient memory exists to hold all the data needed by an application, then
the system will need to page-in the required data from disk into memory, but
may also need to page-out data to make room for the new page. This
invariably results in slower system performance based on the disk I/O
overhead for satisfying successive paging requests for processes.

Important: When an application terminates, all of its working pages are
immediately returned to the free list. Its persistent pages (files), however,
remain in RAM and are not added back to the free list until they are stolen by
the VMM (Virtual Memory Manager) for other programs. For this reason, the
fre value may not indicate all the real memory that can be readily available for
use by processes. If a page frame is needed, then persistent pages related to
terminated applications are among the first to be handed over to another
program.
 Appendix A. Performance Monitoring Tools 165

Although no absolute value can be proposed based on the varieties of
hardware configurations, a pi value greater than 5 per second generally
provides an initial indication of memory resource contention. If you observe
high I/O wait in the wa column and also a non-negligible number in the b
(blocked queue of threads) column as well as high numbers in pi and po, you
can suspect memory shortage.

� Action

When you find a memory shortage, the most effective remedy is to add more
memory to your system. In some cases, your application has a memory leak
problem. If this is the case, the application should be fixed.

svmon
The svmon command provides a more in-depth analysis of memory usage than
vmstat. Because WebSphere Application Server consumes a good deal of
memory, this command will provide a better insight on performance problems
related with WAS.

To determine whether svmon is installed and available, run the following
command:

lslpp -lI perfagent.tools

topas
AIX memory management subsystem classifies memory pages into the
following two categories:

Computational pages Pages that belong to working-storage segments or
program text segments. A segment is considered to
be a program text segment if an instruction cache
miss occurs on any of its pages.

File pages The remaining pages of total memory. These are
usually pages from permanent data files on disks.

When an application terminates, all of its working storage pages are
immediately returned to the free list. Its persistent pages (files), however,
remain in RAM and are not added back to the free list until they are stolen by
the VMM for other programs. For this reason, the fre value may not indicate
all the real memory that can be readily available for use by processes.

topas is an AIX utility that can address this issue.

� What to watch

Compare the following values in MEMORY section.

Real,MB The size of real memory in megabytes.
166 WCS V5.1 Performance Tuning

% Comp The percentage of real memory currently allocated to
computational page frames. Computational page frames are
generally those that are backed by paging space.

% Noncomp The percentage of real memory currently allocated to
non-computational frames. Non-computational page frames
are generally those that are backed by file space, either data
files, executable files, or shared library files.

% Client The percentage of real memory currently allocated to cache
remotely mounted files.

If the memory utilization rate is 100%, your system is short of memory.

svmon -P
svmon -P command sorts processes by memory usage and displays the memory
usage statistics for the top Count processes. It is useful for watching which
process is using the most memory.

� What to watch

The svmon -Put 10 lists the top 10 processes with detailed reports on their
memory usage, identifying exactly how much memory each process on the
system is using. In our tests, we observed the most memory-intensive
processes are java processes invoked by WAS. Our example is shown in
Example A-11.

� Action

No particular system tuning tips are applicable.

Example: A-11 Sample output of svmon

svmon -Put10

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 23778 java 74977 1397 895 60289 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range
 18839 3 work shmat/mmap 58025 0 0 58002 0..60952
 18018 d work shared library text 5243 0 29 38 0..65535
 0 0 work kernel seg 1944 1388 866 1979 0..21611 :

65474..65535
 1c41d - pers /dev/hd2:82003 1857 0 - - 0..2828
 d4ac - pers /dev/hd2:153679 1307 0 - - 0..1347
 68a7 - pers /dev/hd2:565297 1094 0 - - 0..1093
 f4ae - pers /dev/hd2:153681 604 0 - - 0..1742
 13432 - pers /dev/hd2:168292 516 0 - - 0..760
 Appendix A. Performance Monitoring Tools 167

DB2 Monitoring Tools
IBM DB2 provides a number of internal monitoring tools that are shipped as part
of the base product. The tools in question provide various viewpoints of database
activity. The following sections provide an introduction of to the tools in question
with further implementation details available from the IBM Redbook DB2 UDB
V7.1 Performance Tuning Guide, SG24-6012.

Snapshot Monitor
DB2 provides a utility called snapshot for capturing component activity
measurements in the form of counts for specific actions within the database at a
specific point in time. However, before attempting to extract what is termed a
monitored ‘snapshot’ of database system activity, the applicable switches for the
components to be included in the snapshot report must be enabled.

To determine the status of current monitor switch settings, issue the following
command as the db2 instance owner:

db2 get monitor switches

This command provides output of the form shown in Example A-12.

Example: A-12 Output of monitor switches

Monitor Recording Switches

Switch list for node 0
Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

Depending on the which aspect of DB2 activity is of interest for analysis, the
appropriate switch is activated by executing the following DB2 command format:

db2 update monitor switches using { switch-name {ON | OFF} ...}

[AT NODE node-num | GLOBAL]

Note: Monitoring at the database manager level will impact the performance
of all databases created under that instance.
168 WCS V5.1 Performance Tuning

switch-name:

BUFFERPOOL, LOCK, SORT, STATEMENT, TABLE, UOW

For example, in order to examine the bufferpool and statement activities on a
local database, the following switches are activated by the command:

db2 update monitor switches using BUFFERPOOL ON STATEMENT ON

Once monitor switches are enabled, snapshots can be obtained at any point for
either the database manager:

db2 get snapshot for database manager

or for a specific database (that is, a database with at least one active
connection):

db2 get snapshot for {all|<specific component>} on <db alias name>

The output report will be of the form shown in the sample output in Section “DB2
snapshot output” on page 180, with the above command piped to a file for later
review. We have used this command to study database buffer pool utilization
under a stress test.

The points of interest differ according to the component(s) being monitored and
further details on the data gathering and analysis process is available in the DB2
product documentation, DB2 UDB System Monitor Guide and Reference V7,
SC09-2956.

Event monitor
DB2 event monitor differs in action from a snapshot monitor in that data collected
and reported for components occurs over a period of time. This creates a useful
trace of the state of events occurring in the database over the monitored period,
and provides a preliminary indicator on possible problematic areas at the
database or application level.

Before data can be recorded, an event monitor must be created that indicates
the components to be measured. The command used to create an event monitor
is of the format:

db2 create event monitor <monitor name> for [database | tables |
deadlocks | bufferpools | statements | transactions] write to file
<pathname to file>
 Appendix A. Performance Monitoring Tools 169

For example, if deadlock problems need to be analyzed, the following command
can be used to create an applicable event monitor:

db2 “create event monitor STTRC for deadlocks write to file
‘/itso/db2inst1’”

which will create an event monitor that will log the predefined metrics relative to
dead lock analysis.

In order to minimize the impact of monitoring activities on the database
performance, it is usually worthwhile to create a ‘non-blocking’ event monitor that
will discard DB2 agent data if the monitors data collection buffers become full.
Otherwise, the monitor will suspend the DB2 agents from sending further data,
which incurs an additional runtime overhead as agents will need to check the
monitor status for sending data each time the particular event occurs.

For creating a non-blocking event monitor, the parameter NONBLOCKED is added
e.g. for the above example, the command would be changed to:

db2 “create event monitor STTRC for statements write to file ‘/itso/db2inst1’
NONBLOCKED”

The event monitor is then activated by the following command:

db2 “set event monitor STTRC state = 1”

To dump the logged information and close the event monitor file, the event
monitor should be deactivated as:

db2 “set event monitor STTRC state = 0”

To analyze collected data, you need to re-format binary trace information to
ASCII text format using the db2evmon utility. For example,

db2evmon -db <database name> -evm STTRC > sttrace.txt

Note: Do not add a filename in the path statement, as the event monitor
generates log file names automatically at runtime.

Important: The monitor will stop logging if disk space becomes exhausted,
therefore sufficient free space should be made available prior to enabling
monitor logging.
170 WCS V5.1 Performance Tuning

This step must be done before resetting or dropping the event monitor.
Otherwise, db2evmon will not be able to generate the trace log.

A sample of the output for statement monitoring is shown in Section “DB2 event
monitor sample output” on page 192.

Once testing has been completed, the event monitor can either be reset or
removed by issuing the respective commands:

db2 reset monitor for database <database name>

or

db2 drop event monitor STTRC

The Explain Facility
If you want to know how a query will be executed by DB2, you must analyze its
access plan, which is the method for retrieving data from a specific table. The
Explain Facility will provide information about how DB2 will access the data in
order to resolve the SQL statements. If you have identified a particular
application as the possible source of a performance problem, you need to obtain
the SQL statements that the application issues and analyze the access plan for
those SQL statements.The DB2 Explain Facility provides a mechanism for
extracting information regarding the data access methods used in execution of
SQL queries by the DB2 optimizer. Further details on how to create the
necessary tables and analyze the information reported by the Explain tool is
provided in DB2 UDB V7.1 Performance Tuning Guide, SG24-6012.

CLI/ODBC/JDBC Trace Facility
The CLI/ODBC/JDBC Trace Facility is used to capture information specific to the
communication between a CLI client and DB2. All function calls executed are
recorded in a text file for later analysis. In addition to functional information,
however, the trace file contains elapsed time information that can be extremely
useful for application and database tuning.This facility can help pinpoint long
running statements and analyze the time spent in the client application, DB2, or
the network. Further details can be found in Appendix K of DB2 UDB CLI Guide
and Reference V7, SC09-2950.

Important: On a production system, it is strongly recommended that once
event monitoring data has be collected for analysis, all enabled event monitors
are disabled to avoid impacting system performance.
 Appendix A. Performance Monitoring Tools 171

To obtain a CLI trace, run the application after activating the trace using the
command:

db2 update cli cfg for section common using trace 1 tracepathname <fully
qualified pathname>

db2 update cli cfg for section common using tracecomm 1

Silk Preview
Silk Preview by Segue Software, Inc. is a free introduction to load and scalability
testing. Silk Preview monitors the access times of Web pages, and gives you
valuable insight into whether or not your application is suffering performance
degradation.

� Real-world load testing is very complex, and covers a lot more territory.

� Silk Preview is only a sample of the functionality and user interface of
SilkPerformer, Segue’s high-end load testing tool.

� The system requirements for SilkPreview include Windows NT 4.0 with
Service Pack 5 or higher or Windows 2000, and a Windows installer service
(redistributed on SilkPerformer media).

Note: Although SilkPreview only runs on Windows NT or Windows 2000, you
can use it to monitor the access times of any WebSphere Commerce Suite
Web pages, regardless of the operating system on which you are running
Commerce Suite.
172 WCS V5.1 Performance Tuning

Appendix B. Oracle tuning tips

This appendix provides the brief summary of Oracle database tuning tips
pertinent to WCS 5.1. The tips given here were tested on WCS 4.1 but have not
been tested on WCS 5.1. Therefore, the information in this appendix should be
used at the user’s discretion.

For more detailed information on Oracle database tuning, refer to Database
Performance on AIX in DB2 UDB and Oracle Environments, SG24-5511.

B

© Copyright IBM Corp. 2001 173

Top 10s
1. Set CURSOR_SHSRING in init$ORACLE_SID.ora to "force" in order for

Oracle to build up bind variables out of dynamic SQLs.

2. Run analyze as frequently as possible on all WCS tables. Running it once a
week might be a good start.

3. Rebuild your indexes frequently. Although the frequency for this depends on
the amount of update activities, the generally recommended best practice is
to make it a weekly or biweekly activity.

4. Avoid setting the shared pool size of EJSADMIN too large. A size of 50-70
MB is a good start.

5. Setting WCS database’s shared pool size to 100MB is a good start.

6. Keep the KEYS table in the database buffer cache.

7. Set checkpoint_process to TRUE. The checkpoint process should always be
running if you are running Oracle database on an SMP machine and the
database has more than 5 or 10 data files.

8. Set redo log size to 5 ~ 20M in general. For heavy update workload, a size of
50M or more is a good start. A redo log switch should occur every 20 to 30
minutes. The redo log switch interval can be controlled by adjusting redo logs
size and setting LOG_CHECKPOINT_INTERVAL equal to the number of
database blocks that should be kept in database buffer cache before writing
to disk.

9. Note that the default value for log_buffer (8K) is usually way too small. Setting
it to 512k to 1Mb is a good start.

10.The number of rollback segment should approximately be equal to (number of
concurrent update transactions) / 4.
174 WCS V5.1 Performance Tuning

Recommended values

Table 6-1 Recommended values for tunable parameters

Parameter Name Recommended value Remark

db_block_size 8,192

sort_area_size 2,097,152

sort_area_retained_size 2,097,152

db_block_buffers 20,000 db_block_buffers (in bytes)
+ shared_pool_size should
not exceed 2/3 of physical
memory.

shared_pool_size 102,400,000 Tune this parameter to
maximize the hit ratio on
shared pool area and to
accommodate
non-sharable SQL. If there
are contentions on the
shared memory, increase
this number.

log_buffer 1,024,000

pre_page_sga Yes Keep SGA in memory
 Appendix B. Oracle tuning tips 175

Tips for physical layout design
� Assign a separate tablespace for rollback segments.

� Active tables should be placed on separate disks. Be sure to apply this rule to
system tablespace.

� Redo log files should be placed on separate disks.

� No user should have system tablespace as his default tablespace. Check the
current setting with the following SQL statement:

select username from dba_users where default_tablespace = 'SYSTEM';

� Share Temp tablespace as temporary tablespace for normal users. Check the
current setting with the following SQL statement:

select username from dba_users where temporary_tablespace = 'TEMP';

� The Temp tablespace should be placed on a separate disk.

� Spread the following segments across as many disk drives as possible.

– RBS (especially if there are heavy update transactions)

– TEMP(especially if there are many sorts to disks)

– SYSTEM

– DATA

– INDEX

� Check the values of physical reads and physical writes in v$filestat view.

� Spread control files & redo logs across available disk drives.

� To see if there is I/O contention, check the value of ‘db file sequential read’
column in v$system_event view.
176 WCS V5.1 Performance Tuning

Optimizing sorts
� Try to do most sorts in memory.

� The common size for sort_area_size is 1MB

� Watch out for page swaps at OS level and parallelism.

� Set sort_write_buffers to 2 ~ 8.

� Set sort_write_buffer_size to 32K ~ 64K.
 Appendix B. Oracle tuning tips 177

178 WCS V5.1 Performance Tuning

Appendix C. Sample Outputs

C

© Copyright IBM Corp. 2001 179

DB2 snapshot output
The following is typical output resulting from a request for database manager
information:

 Database Manager Snapshot

Node type = Database Server with
local and remote clients
Instance name = user1
Database manager status = Active

Product name =
Product identification =
Service level =

Sort heap allocated = 0
Post threshold sorts = 0
Piped sorts requested = 3
Piped sorts accepted = 3

Start Database Manager timestamp = 04-04-1997
10:54:32.357375
Last reset timestamp = 04-04-1997
14:28:54.799017
Snapshot timestamp = 04-06-1997
14:27:19.996209

Remote connections to db manager = 0
Remote connections executing in db manager = 0
Local connections = 1
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 2
High water mark for agents waiting for a token = 1
Agents registered = 2
Agents waiting for a token = 0
Idle agents = 0

Committed private Memory (Bytes) = 12435456

Buffer Pool Activity Information (BUFFERPOOL) = ON 04-04-1997 14:29:42
Lock Information (LOCK) = ON 04-04-1997 14:29:42
Sorting Information (SORT) = ON 04-04-1997 14:29:42
SQL Statement Information (STATEMENT) = ON 04-04-1997 14:29:42
Table Activity Information (TABLE) = ON 04-04-1997 14:29:42
Unit of Work Information (UOW) = ON 04-04-1997 14:29:42
180 WCS V5.1 Performance Tuning

Agents assigned from pool = 5
Agents created from empty pool = 2
Agents stolen from another application = 0
High water mark for coordinating agents = 2
Max agents overflow = 0

The following is typical output resulting from a request for database
information:

 Database Snapshot

Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Database status = Active
Catalog node number = 0

Catalog network node name =
Operating system running at database server= AIX
Location of the database = Remote

Locks held currently = 7
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 1400
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Current applications waiting on locks = 0
Lock Timeouts = 0

Total sort heap allocated = 0
Total sorts = 3
Total sort time (ms) = 1
Sort overflows = 0
Active sorts = 0

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0

Buffer pool data logical reads = 32
Buffer pool data physical reads = 13
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
 Appendix C. Sample Outputs 181

Buffer pool index logical reads = 55
Buffer pool index physical reads = 23
Asynchronous pool index page reads = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 364
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0
Time waited for prefetch (ms) = 0

Direct reads = 34
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct reads elapsed time (ms) = 1
Direct write elapsed time (ms) = 0

Database files closed = 0

Commit statements attempted = 1
Rollback statements attempted = 0
Dynamic statements attempted = 13
Static statements attempted = 1
Failed statement operations = 0
Select SQL statements executed = 1
Update/Insert/Delete statements executed = 0

DDL statements executed = 0
Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 8

Binds/precompiles attempted = 0

First database connect timestamp = 04-04-1997 14:29:55.197659
182 WCS V5.1 Performance Tuning

Last reset timestamp =
Last backup timestamp =
Snapshot timestamp = 04-04-1997 14:32:14.151875

High water mark for connections = 1
High water mark for database heap = 652811
Application connects = 1
Secondary connects total = 0
Applications connected currently = 1
Appls. executing in db manager currently = 0

Maximum secondary log space used (Bytes) = 0
Maximum total log space used (Bytes) = 0
Secondary logs allocated currently = 0
Log pages read = 0
Log pages written = 0

Package cache lookups = 1
Package cache inserts = 1
Application section lookups = 13
Application section inserts = 1

Catalog cache lookups = 2
Catalog cache inserts = 2
Catalog cache overflows = 0
Catalog cache heap full = 0

Agents associated with appls. = 1
Maximum agents associated with appls. = 1
Maximum coordinating agents = 0
Agents waiting on locks = 0

The following is typical output resulting from a request for application information
(by specifying either an application ID, an agent ID, all applications, or all
applications on a database):

 Application Snapshot

Application handle = 5
Application status = UOW Waiting
Status change time = 04-04-1997 14:31:46.930243
Application code page = 850
Application country code = 1
DUOW correlation token = *LOCAL.user1.970404192955
Application name = db2bp_32
Application ID = *LOCAL.user1.970404192956
Sequence number = 0001
 Appendix C. Sample Outputs 183

Connection request start timestamp = 04-04-1997 14:29:55.197659
Connect request completion timestamp = 04-04-1997 14:29:55.726359
Application idle time = 28 seconds
Authorization ID = USER1
Execution ID = user1
Configuration NNAME of client =
Client database manager product ID = SQL03010
Process ID of client application = 18660
Platform of client application = AIX
Communication protocol of client = Local Client
Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Client database alias = sample
Input database alias = SAMPLE
Last reset timestamp =
Snapshot timestamp = 04-04-1997 14:32:14.151875
The highest authority level granted =
 Direct DBADM authority
 Direct CREATETAB authority
 Direct BINDADD authority
 Direct CONNECT authority
 Direct CREATE_NOT_FENC authority
 Direct IMPLICIT_SCHEMA authority
 Indirect SYSADM authority
 Indirect CREATETAB authority
 Indirect BINDADD authority
 Indirect CONNECT authority
 Indirect IMPLICIT_SCHEMA authority
Coordinating node number = 0
Current node number = 0
Coordinator agent process or thread ID = 75340
Agents working for the application = 1
Agents stolen = 0
Agents waiting on locks = 0
Maximum associated agents = 1
Priority at which application agents work = 0
Priority type = Static

Locks held by application = 7
Lock waits since connect = 0
Time application waited on locks (ms) = 0
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Number of Lock Timeouts since connected = 0
Total time UOW waited on locks (ms) = 0

Total sorts = 3
184 WCS V5.1 Performance Tuning

Total sort time (ms) = 1
Total sort overflows = 0

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Buffer pool data logical reads = 32
Buffer pool data physical reads = 13
Buffer pool data writes = 0
Buffer pool index logical reads = 55
Buffer pool index physical reads = 23
Buffer pool index writes = 0
Total buffer pool read time (ms) = 364
Total buffer pool write time (ms) = 0
Time waited for prefetch (ms) = 0
Direct reads = 34
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct reads elapsed time (ms) = 1
Direct write elapsed time (ms) = 0

Number of SQL requests since last commit = 13
Commit statements = 1
Rollback statements = 0
Dynamic SQL statements attempted = 13
Static SQL statements attempted = 1
Failed statement operations = 0
Select SQL statements executed = 1
Update/Insert/Delete statements executed = 0
DDL statements executed = 0
Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0
Binds/precompiles attempted = 0
Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 8
Rows read = 53
Rows written = 0

UOW log space used (Bytes) = 0
Previous UOW completion timestamp = 04-04-1997 14:29:55.728025
 Appendix C. Sample Outputs 185

UOW start timestamp = 04-04-1997 14:31:46.580691
UOW stop timestamp =
UOW completion status =
Open remote cursors = 0
Open remote cursors with blocking = 0
Rejected Block Remote Cursor requests = 0
Accepted Block Remote Cursor requests = 1
Open local cursors = 0
Open local cursors with blocking = 0

Total User CPU Time used by agent (s) = 0.070000
Total System CPU Time used by agent (s) = 0.020000
Package cache lookups = 1
Package cache inserts = 1
Application section lookups = 13
Application section inserts = 1
Catalog cache lookups = 0
Catalog cache inserts = 0
Catalog cache overflows = 0
Catalog cache heap full = 0

Most recent operation = Close
Cursor name = SQLCUR201
Most recent operation start timestamp = 04-04-1997 14:31:46.859493
Most recent operation stop timestamp = 04-04-1997 14:31:46.930287

Statement type = Dynamic SQL Statement
Statement = Select
Section number =
Application creator =
Package name =
Cursor name = SQLCUR201
Statement node number = 0
Statement start timestamp = 04-04-1997 14:31:46.859493
Statement stop timestamp = 04-04-1997 14:31:46.930287
Total user CPU time = 0.000000
Total system CPU time = 0.000000
SQL compiler cost estimate in timerons = 9355
SQL compiler cardinality estimate = 1600
Degree of parallelism requested = 1
Number of agents working on statement = 1
Number of subagents created for statement = 1
Statement sorts = 3
Total sort time = 1
Sort overflows = 0
Rows read = 0
Rows written = 0
Rows deleted = 0
Rows updated = 0
186 WCS V5.1 Performance Tuning

Rows inserted = 0
Rows fetched = 0
Number of subsections = 1
Dynamic SQL statement text =
SELECT DEPTNAME, DEPTNUMB, MANAGER, NAME FROM ORG, STAFF
 WHERE DEPTNUMB = DEPT AND MANAGER = ID ORDER BY DEPTNAME

The following is typical output resulting from a request for buffer pool information:

 Bufferpool Snapshot

Bufferpool name = IBMDEFAULTBP
Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Buffer pool data logical reads = 32
Buffer pool data physical reads = 13
Buffer pool data writes = 0
Buffer pool index logical reads = 55
Buffer pool index physical reads = 23
Total buffer pool read time (ms) = 364
Total buffer pool write time (ms) = 0
Database files closed = 0

Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 34
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct reads elapsed time (ms) = 1
Direct write elapsed time (ms) = 0

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0

The following is typical output resulting from a request for table information:
 Appendix C. Sample Outputs 187

 Table Snapshot

First database connect timestamp = 04-04-1997 14:29:55.197659

Last reset timestamp =
Snapshot timestamp = 04-04-1997 14:32:14.151875
Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Number of accessed tables = 6

Table Schema Table Name Table Type Rows
Written Rows Read Overflows
-------------------- -------------------- --------------------
------------ ---------- ----------
USER1 STAFF User
0 35 0
USER1 ORG User
0 8 0
SYSIBM SYSTABLES Catalog
0 2 0
SYSIBM SYSTABLESPACES Catalog
0 3 0
SYSIBM SYSPLAN Catalog
0 1 0
SYSIBM SYSDBAUTH Catalog
0 3 0

The following is typical output resulting from a request for table space
information:

 Tablespace Snapshot

First database connect timestamp = 04-04-1997 14:29:55.197659
Last reset timestamp =
Snapshot timestamp = 04-04-1997 14:32:14.151875
Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Number of accessed tablespaces = 3

Tablespace name = SYSCATSPACE

 Data pages copied to extended storage = 0
 Index pages copied to extended storage = 0
188 WCS V5.1 Performance Tuning

 Data pages copied from extended storage = 0
 Index pages copied from extended storage = 0

 Buffer pool data logical reads = 26
 Buffer pool data physical reads = 11
 Asynchronous pool data page reads = 0
 Buffer pool data writes = 0
 Asynchronous pool data page writes = 0
 Buffer pool index logical reads = 55
 Buffer pool index physical reads = 23
 Asynchronous pool index page reads = 0
 Buffer pool index writes = 0
 Asynchronous pool index page writes = 0
 Total buffer pool read time (ms) = 342
 Total buffer pool write time (ms) = 0
 Total elapsed asynchronous read time = 0
 Total elapsed asynchronous write time = 0
 Asynchronous read requests = 0

 Direct reads = 34
 Direct writes = 0
 Direct read requests = 4
 Direct write requests = 0
 Direct reads elapsed time (ms) = 1
 Direct write elapsed time (ms) = 0

 Number of files closed = 0

Tablespace name = TEMPSPACE1

 Data pages copied to extended storage = 0
 Index pages copied to extended storage = 0
 Data pages copied from extended storage = 0
 Index pages copied from extended storage = 0

 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Asynchronous pool data page reads = 0
 Buffer pool data writes = 0
 Asynchronous pool data page writes = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Asynchronous pool index page reads = 0
 Buffer pool index writes = 0
 Asynchronous pool index page writes = 0
 Total buffer pool read time (ms) = 0
 Total buffer pool write time (ms) = 0
 Total elapsed asynchronous read time = 0
 Total elapsed asynchronous write time = 0
 Appendix C. Sample Outputs 189

 Asynchronous read requests = 0

 Direct reads = 0
 Direct writes = 0
 Direct read requests = 0
 Direct write requests = 0
 Direct reads elapsed time (ms) = 0
 Direct write elapsed time (ms) = 0

 Number of files closed = 0

Tablespace name = USERSPACE1

 Data pages copied to extended storage = 0
 Index pages copied to extended storage = 0
 Data pages copied from extended storage = 0
 Index pages copied from extended storage = 0

 Buffer pool data logical reads = 6
 Buffer pool data physical reads = 2
 Asynchronous pool data page reads = 0
 Buffer pool data writes = 0
 Asynchronous pool data page writes = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Asynchronous pool index page reads = 0
 Buffer pool index writes = 0
 Asynchronous pool index page writes = 0
 Total buffer pool read time (ms) = 22
 Total buffer pool write time (ms) = 0
 Total elapsed asynchronous read time = 0
 Total elapsed asynchronous write time = 0
 Asynchronous read requests = 0

 Direct reads = 0
 Direct writes = 0
 Direct read requests = 0
 Direct write requests = 0
 Direct reads elapsed time (ms) = 0
 Direct write elapsed time (ms) = 0

 Number of files closed = 0

The following is typical output resulting from a request for lock information:

 Database Lock Snapshot

190 WCS V5.1 Performance Tuning

Database name = SAMPLE
Database path =
/home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Locks held = 7
Applications currently connected = 1
Applications currently waiting on locks = 0
Snapshot timestamp = 04-04-1997 14:32:14.151875

Application handle = 5
Application ID = *LOCAL.user1.970404192956
Sequence number = 0001
Application name = db2bp_32
Authorization ID = USER1
Application status = UOW Waiting
Status change time =
Application code page = 850
Locks held = 7
Total wait time (ms) = 0

Object Name Object Type Tablespace Name Table Schema
Table Name Mode Status
----------- --------------- -------------------- --------------------
-------------------- ---- ----------
1545 Row SYSCATSPACE SYSIBM
SYSTABLES NS Granted
1544 Row SYSCATSPACE SYSIBM
SYSTABLES NS Granted
2 Table SYSCATSPACE SYSIBM
SYSTABLES IS Granted
27 Table SYSCATSPACE SYSIBM
SYSTABLESPACES S Granted
257 Row SYSCATSPACE SYSIBM
SYSPLAN S Granted
7 Table SYSCATSPACE SYSIBM
SYSPLAN IS Granted
0 Internal
S Granted
 Appendix C. Sample Outputs 191

DB2 event monitor sample output
The following sample was generated from a event monitor created for statement
event logging.

--
 EVENT LOG HEADER
 Event Monitor name: STTRC
 Server Product ID: SQL07010
 Version of event monitor data: 6
 Byte order: BIG ENDIAN
 Number of nodes in db2 instance: 1
 Codepage of database: 1208
 Country code of database: 1
 Server instance name: db2inst1
--
--

--
--
 Database Name: MALL
 Database Path: /itso/db2inst1/db2inst1/NODE0000/SQL00002/
 First connection timestamp: 03-28-2001 10:43:44.771625
 Event Monitor Start time: 03-28-2001 12:21:29.892155
--
--

3) Connection Header Event ...
 Appl Handle: 38
 Appl Id: 0903BB88.AAC7.010328164344
 Appl Seq number: 0001
 DRDA AS Correlation Token: 0903BB88.AAC7.010328164344
 Program Name : java
 Authorization Id: DB2INST1
 Execution Id : root
 Codepage Id: 819
 Country code: 1
 Client Process Id: 20158
 Client Database Alias: MALL
 Client Product Id: SQL07010
 Client Platform: AIX
 Client Communication Protocol: TCPIP
 Client Network Name: dobong
 Connect timestamp: 03-28-2001 10:43:44.771625

4) Connection Header Event ...
 Appl Handle: 39
 Appl Id: 0903BB88.AAE0.010328164640
 Appl Seq number: 0001
192 WCS V5.1 Performance Tuning

 DRDA AS Correlation Token: 0903BB88.AAE0.010328164640
 Program Name : java
 Authorization Id: DB2INST1
 Execution Id : root
 Codepage Id: 819
 Country code: 1
 Client Process Id: 20158
 Client Database Alias: MALL
 Client Product Id: SQL07010
 Client Platform: AIX
 Client Communication Protocol: TCPIP
 Client Network Name: dobong
 Connect timestamp: 03-28-2001 10:46:40.592150

5) Connection Header Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001
 DRDA AS Correlation Token: *LOCAL.db2inst1.010328173938
 Program Name : db2bp
 Authorization Id: DB2INST1
 Execution Id : db2inst1
 Codepage Id: 819
 Country code: 1
 Client Process Id: 19180
 Client Database Alias: mall
 Client Product Id: SQL07010
 Client Platform: AIX
 Client Communication Protocol: Local
 Client Network Name:
 Connect timestamp: 03-28-2001 11:39:38.477171

6) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Operation: Static Commit
 Package : SQLC2D01
 Cursor :
 Cursor was blocking: FALSE

 Start Time: 03-28-2001 12:21:29.944614
 Stop Time: 03-28-2001 12:21:29.944683
 Exec Time: 0.000069 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 Appendix C. Sample Outputs 193

 System CPU: 0.000000 seconds
 Fetch Count: 0
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000

7) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Type : Dynamic
 Operation: Prepare
 Section : 201
 Creator : NULLID
 Package : SQLC2D01
 Cursor : SQLCUR201
 Cursor was blocking: FALSE
 Text : select count(*) from users

 Start Time: 03-28-2001 12:21:58.729329
 Stop Time: 03-28-2001 12:21:58.738108
 Exec Time: 0.008779 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 System CPU: 0.000000 seconds
 Fetch Count: 0
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000
194 WCS V5.1 Performance Tuning

8) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Type : Dynamic
 Operation: Open
 Section : 201
 Creator : NULLID
 Package : SQLC2D01
 Cursor : SQLCUR201
 Cursor was blocking: FALSE
 Text : select count(*) from users

 Start Time: 03-28-2001 12:21:58.738538
 Stop Time: 03-28-2001 12:21:58.738596
 Exec Time: 0.000058 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 System CPU: 0.000000 seconds
 Fetch Count: 0
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000

9) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Type : Dynamic
 Operation: Describe
 Section : 201
 Creator : NULLID
 Package : SQLC2D01
 Cursor : SQLCUR201
 Cursor was blocking: FALSE
 Appendix C. Sample Outputs 195

 Text : select count(*) from users

 Start Time: 03-28-2001 12:21:58.738538
 Stop Time: 03-28-2001 12:21:58.739028
 Exec Time: 0.000490 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 System CPU: 0.000000 seconds
 Fetch Count: 1
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000

10) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Type : Dynamic
 Operation: Close
 Section : 201
 Creator : NULLID
 Package : SQLC2D01
 Cursor : SQLCUR201
 Cursor was blocking: FALSE
 Text : select count(*) from users

 Start Time: 03-28-2001 12:21:58.738538
 Stop Time: 03-28-2001 12:21:58.741030
 Exec Time: 0.002492 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 System CPU: 0.000000 seconds
 Fetch Count: 1
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
196 WCS V5.1 Performance Tuning

 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000

11) Statement Event ...
 Appl Handle: 40
 Appl Id: *LOCAL.db2inst1.010328173938
 Appl Seq number: 0001

 Record is the result of a flush: FALSE

 Operation: Static Commit
 Package : SQLC2D01
 Cursor :
 Cursor was blocking: FALSE

 Start Time: 03-28-2001 12:21:58.742004
 Stop Time: 03-28-2001 12:21:58.742064
 Exec Time: 0.000060 seconds
 Number of Agents created: 1
 User CPU: 0.000000 seconds
 System CPU: 0.000000 seconds
 Fetch Count: 0
 Sorts: 0
 Total sort time: 0
 Sort overflows: 0
 Rows read: 0
 Rows written: 0
 Internal rows deleted: 0
 Internal rows updated: 0
 Internal rows inserted: 0
 SQLCA:
 sqlcode: 0
 sqlstate: 00000
 Appendix C. Sample Outputs 197

198 WCS V5.1 Performance Tuning

Appendix D. GCStats.java

This appendix provides the source code for the tool GCStats, which collects and
summarizes information about garbage collection.

D

© Copyright IBM Corp. 2001 199

GCStats.java
// GCStats.java
// This utility tabulates data generated from a verbose garbage collection
trace.
// To run this utility type:
// java GCStats inputfile [total_time]
//
// Gennaro (Jerry) Cuomo - IBM Corp. 03/2000
// Carmine F. Greco 3/17/00 - JDK1.2.2 compatibility
//
import java.io.*;
import java.util.*;

public class GCStats {

 static int total_time=-1; // total time of run in ms
 static long total_gctime=0, total_gctime1=0; // total time spent in GCs
 static long total_bytes=0, total_bytes1=0; // total bytes collected
 static long total_free=0, total_free1=0; // total
 static int total_gc=0; // total number of GCs

 static boolean verbose=false; // debug trace on/off

 public static void parseLine(String line) {
 // parsing a string that looks like this...
 // <GC(31): freed 16407744 bytes in 107 ms, 97% free
(16417112/16777208)>

 if (isGCStatsLine(line)) { // First test if line starts with "<GC..."

 if (verbose) System.out.println("GOT a GC - "+line);
 long temp=numberBefore(line, " bytes")/1024; // get total memory
collected
 total_bytes+=temp; total_bytes1+=(temp*temp);
 temp=numberBefore(line, " ms"); // get time in GC
 total_gctime+=temp; total_gctime1+=(temp*temp);
 temp=numberBefore(line, "% free"); // get time % free
 total_free+=temp; total_free1+=(temp*temp);
 if (temp!=0) {
 total_gc++; // total number of GCs
 }
 }
 }

 public static int numberBefore(String line, String s) {
 int ret = 0;
 int idx = line.indexOf(s);
200 WCS V5.1 Performance Tuning

 int idx1= idx-1;
 if (idx>0) {

// the string was found, now walk backwards until we find the blank
 while (idx1!=0 && line.charAt(idx1)!=' ') idx1--;
 if (idx1>0) {
 String temp=line.substring(idx1+1,idx);
 if (temp!=null) {
 ret=Integer.parseInt(temp); // convert from string to number
 }
 } else {
 if (verbose) System.out.println("ERROR: numberBefore() - Parse
Error looking for "+s);
 }
 }
 return ret;
 }

 public static boolean isGCStatsLine(String line) {
 return ((line.indexOf("<GC") > -1) && (line.indexOf(" freed")>0) &&
(line.indexOf(" bytes")>0));
 }

 public static void main (String args[]) {
 String filename=null;
 BufferedReader foS=null;
 boolean keepgoing=true;

 if (args.length==0) {
 System.out.println("GCStats - ");
 System.out.println(" - ");
 System.out.println(" - Syntax: GCStats filename
[run_duration(ms)]");
 System.out.println(" - filename = file containing -verbosegc
data");
 System.out.println(" - run_duration(ms) = duration of fixed work
run in which GCs took place");
 return;
 }
 if (args.length>0) {
 filename=args[0];
 }
 if (args.length>1) {
 total_time=Integer.parseInt(args[1]);
 }
 if (verbose) System.out.println("Filename="+filename);

 try {
 foS = new BufferedReader(new FileReader(filename));
 Appendix D. GCStats.java 201

 } catch (Throwable e) {
 System.out.println("Error opening file="+filename);
 return;
 }

 while (keepgoing) {
 String nextLine;
 try {
 nextLine=foS.readLine();
 } catch (Throwable e) {
 System.out.println("Cannot read file="+filename);
 return;
 }
 if (nextLine!=null) {
 parseLine(nextLine);
 } else {
 keepgoing=false;
 }
 }
 try {
 foS.close();
 } catch (Throwable e) {
 System.out.println("Cannot close file="+filename);
 return;
 }

 System.out.println("---");
 System.out.println("- GC Statistics for file - "+filename);
 System.out.println("---");
 System.out.println("-**** Totals ***");
 System.out.println("- "+total_gc+" Total number of GCs");
 System.out.println("- "+total_gctime+" ms. Total time in GCs");
 System.out.println("- "+total_bytes+" Kbytes. Total memory collected
during GCs");
 System.out.println("- ");
 System.out.println("-**** Averages ***");

 double mean=total_gctime/total_gc,
stddev=Math.sqrt((total_gctime1-2*mean*total_gctime+total_gc*mean*mean)/total_g
c);
 int imean=new Double(mean).intValue(), istddev=new
Double(stddev).intValue();
 System.out.println("- "+imean+" ms. Average time per GC.
(stddev="+istddev+" ms.)");

 mean=total_bytes/total_gc;
stddev=Math.sqrt((total_bytes1-2*mean*total_bytes+total_gc*mean*mean)/total_gc)
;
 imean=new Double(mean).intValue(); istddev=new Double(stddev).intValue();
202 WCS V5.1 Performance Tuning

 System.out.println("- "+imean+" Kbytes. Average memory collected per GC.
(stddev="+istddev+" Kbytes)");

 mean=total_free/total_gc;
stddev=Math.sqrt((total_free1-2*mean*total_free+total_gc*mean*mean)/total_gc);
 imean=new Double(mean).intValue(); istddev=new Double(stddev).intValue();
 System.out.println("- "+imean+"%. Free memory after each GC.
(stddev="+istddev+"%)");

 if (total_time>0 && total_gctime>0) {
 System.out.println("- "+((total_gctime*1.0)/(total_time*1.0))*100.0+"%
of total time ("+total_time+"ms.) spent in GC.");
 }
 System.out.println("___________________________ "+new Date());
 System.out.println("");
 }
 Appendix D. GCStats.java 203

204 WCS V5.1 Performance Tuning

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications see , “How to get IBM Redbooks”
on page 206.

� WebSphere V3 Performance Tuning Guide, SG24-5657

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

� WebSphere Scalability: WLM and Clustering using WebSphere Application
Server, SG24-6153

� Up and Running with WebSphere Site Analyzer, SG24-6169

� AIX Logical Volume Manager: From A to Z: Introduction and Concepts,
SG24-5432

� IBM Certification Study Guide: AIX Performance and System Tuning,
SG24-6184

� Database Performance on AIX in DB2 UDB and Oracle Environments,
SG24-5511

� DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

Other resources
These publications are also relevant as further information sources:

� A Methodology for Production Performance Tuning, An IBM whitepaper for
WebSphere Application Server Standard and Advanced Editions,

� IBM WebSphere CommerceSuite What’s new in Version 5.1, shipped on
product CD.

� IBM WebSphere CommerceSuite Site Administrator Version 5.1, shipped on
product CD.

� DB2 UDB Command Reference, SC09-2951

� DB2 UDB System Monitor Guide and Reference V7, SC09-2956

� DB2 UDB CLI Guide and Reference V7, SC09-2950
© Copyright IBM Corp. 2001 205

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www-4.ibm.com/software/webservers/commerce/wcs_pro/WhatsNew.pdf

� http://www-4.ibm.com/software/webservers/appserv/download_ra.html -
Resource Analyzer installation and usage guide

� http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/to
c.htm - Excellent guide for AIX tuning and available tools

� http://www-4.ibm.com/software/webservers/commerce/wcs_pro/ax51adv.pdf
- A detailed implementation guide for 3 tier configuration

� http://www-4.ibm.com/software/webservers/edgeserver/

� http://www.ibm.com/software/webservers/commerce/paymentmanager -
Introduction to IBM Payment Manager

� http://www-4.ibm.com/software/webservers/studio/doc/v35/pagedetailer/E
N/HTML/index.html - Page Detailer guide

� ftp://aixpdslib.seas.ucla.edu/pub/monitor/RISC/4.3/exec/monitor.2.1.5.
tar.z

How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy
from the Redbooks Web Site

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web Site for information about all the CD-ROMs offered, updates and
formats.
206 WCS V5.1 Performance Tuning206 WCS V5.1 Performance Tuning

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

The following terms are trademarks of other companies:
© Copyright IBM Corp. 2001 207

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
208 WCS V5.1 Performance Tuning

Index

Symbols
% tm_act 161
%CPU 157, 159
%idle 159
%MEM 157
%sys 160
%usr 160
%wio 160
.PDE 150

Numerics
1-tier topology 3
2-tier topology 4
3-tier topology 6, 9

A
access.log 114, 115
admin.config 118
AfpaBindLogger 135
AfpaCache 135
AfpaEnable 135
AfpaLogFile 135
AfpaLogging 135
AfpaMaxCache 135
AfpaMinCache 135
AfpaRevalidationTimeout 135
AfpaSendServerHeader 135
applheapsz 22, 73
AutoPageInvalidation 32
Auto-reload 18

B
bufferpool 22, 63, 169

C
cache cleanup worker 32
cache invalidation triggers 33
cache manager 36
cache trace 38
Cache Wizard 19, 35
CacheDelete 32
© Copyright IBM Corp. 2001
CacheDirsPerMember 32
CacheFilePath 34
Caching Subsystem 35
call-by-reference 20, 112
call-by-value 112
child server process 129
CLI 171
clone 48, 53, 73, 107
cloning 20

horizontal 49
clustering 49
configuration manager 30, 33, 35, 38, 123
connection pool 18, 48, 53, 73, 74, 81, 143
connection pooling 81
cookie 146
Cookie session manager 106
CPU utilization 128
CSV file 150

D
database connection 14
database log 58, 59
database optimizer 66
DataSource 48, 53, 81, 107, 108, 111, 122
DB2

client 4
snapshot 70, 72

dbclean 24, 69, 70
bottom up 69
top down 69

deadlock 170
DMS 57, 58, 61

E
EJB 13

access bean 13
Cache absolute limit 100, 102
Cache clean-up interval 100, 102
Cache preferred limit 100, 101, 102
Cache size 100, 101
container 13, 79, 100, 101
entity bean 13, 103
 209

Option A caching 103
Option C caching 103
Passivation directory 100, 102
pool size 104
session bean 102

stateful 102
stateless 13

trace 104
EJB Cache 20
Enterprise Java Bean. See EJB.
entity bean 99, 110
error.log 115
Explain Facility 171
extendednetstats 153

F
Fast Response Cache Accelerator

See FRCA.
file serving enabler 123
file servlet 123, 124
filemon 161
file-serving servlet

See file servlet.
FRCA 134, 136

monitoring 136
frcactrl 134, 136

G
garbage collection 92, 93, 94, 96
GCStats 94
guest shopper 70

H
horizontal scalibility

of WCS 5
HostnameLookups 133
HTTP/1.1 131
HttpSession 126

I
I/O wait 166
IBM HTTP Server

See IHS.
Ierrs 154
IHS 50, 79, 113, 127, 128, 129
INET Sockets 89
Instance Creation wizard 120

iostat 21, 152, 161
IP sprayer 8
Ipkts 154

J
jar 14
Java ORB 79
JAVA TCP/IP 89
JDBC 81
JSP 13, 123, 124, 126, 134, 144

page session directive 126
JVM 90, 93, 143

heap size 17, 92, 93, 96
Xms 92, 93
Xmx 92

K
Kb_read 161
Kb_wrtn 161
Kbps 161
KeepAlive 131
KeepAliveTimeout 131
kernel thread 164
keys

cache manager 36
kproc 158

L
lazy initialization 13
legend 149
ListenBacklog 130
loader

WCS 33
Local Pipes 18, 89
lock escalation 74, 75
locklist 23, 74
Log Limit 117
logical volume 59, 60

M
Max Connections 18, 80
maxagents 75, 82
maxappls 22, 73, 74, 75, 83
MaxClients 16, 17, 79, 128
Maximum Transmission Unit 25
MaxKeepAliveRequests 131
maxlocks 23, 74
210 WCS V5.1 Performance Tuning

MaxObjectsPerMember 34
MaxRequestsPerChild 130
MaxSpareServer 17
MaxSpareServers 129
mbuf 153, 155
MinSpareServers 129
monitor 152

N
nbc_limit 134
nbc_max_cache 134
nbc_min_cache 134
Netscape iPlanet Server 3
netstat 25, 152
Network Buffer Cache 134, 136
Network Dispatcher 9
network tuning 10

O
Object Request Broker

See ORB.
Oerrs 154
off-by-N mirroring 62
Open Servlet Engine

See OSE.
Opkts 154
Oracle 3
ORB 143
OSE 9, 89

P
package cache

See also pckcachesz.
Page Detailer 147, 148

export 150
legend 149

paged in 165
paged out 165
paging space 164
passivation 102
pckcachesz 22, 73
Performance Monitor 143
Performance Toolbox 2.2 for AIX 11
persistent connection 131
persistent page 165
persistent session

enable 107

persistent store 48
physical volume 58
pi 165, 166
plug-in 88
po 165
PreparedStatement cache 20, 110
ps 157

Q
queue 78

active 79
closed 79
open 78, 79
waiting 79

R
RAID 61, 62
Redbooks Web Site 206

Contact us xv
referential integrity 69
relative path 124
reorg 23, 66, 67, 69
reorgchk 66, 67, 69
Resource Analyzer 11, 95, 96, 103, 104, 142, 144

logging option 96
RLimitCPU 132
RLimitMEM 133
RLimitNPROC 133
rotatelogs 114, 115
runstats 23, 66, 69

S
S/W Transmit Queue 155
sar 159
saturation point 18
Serious Event Listener 116

polling interval 116
Serious Event Pool

Interval 116
servlet 124, 144
servlet engine 13, 79, 80, 88
servlet redirector 9, 89
session bean 99
session database 52
session dependent caching 28
session independent caching 28
session management
 Index 211

cookie-based 105
persist 105
persistent 106, 107, 109
URL rewriting 105
WAS 106, 109
WCS 109

session persistence 53
Site Analyzer 115, 145, 147
SMS 57, 58, 61
snapshot 168
sortheap 72
SSL 134
StartServers 17, 128, 129
stderr.log 116
stdout.log 116
striping 61
svmon 166, 167
swapping 92
SYN flood attack 130

T
tablespace 58, 60
tcp_recvspace 156
tcp_sendspace 156
thewall 134, 153, 155
ThreadPerChild 128
throughput 87

curve 85
TimeOut 132
topas 151, 158, 166
tps 161
transport queue 88

type 18, 88
trcstop 163
triggers

See Cache Invalidation triggers.

U
udp_recvspace 156
udp_sendspace 156

V
virtual host 48
Virtual Memory Manager

See VMM.
VMM 165, 166
vmstat 17, 21, 152, 164, 166

volume group 58

W
WAS 6, 9, 83, 113, 115

administrative database 48
WCS 3, 113

architecture 3
cache 28
CACHE HIT 40
caching custom commands 35
command 13
enable caching 30

WCS Performance Monitor 138
WCS session management 20
WCS_CACHE_PLUGIN 38
WebSphere Application Server

See WAS.
WebSphere Commerce Suite

See WCS.
WebSphere Edge Server 9
WLM 5, 103, 110

X
XML 150
xmt_que_size 154
212 WCS V5.1 Performance Tuning

W
CS V5.1 Perform

ance Tuning

®

SG24-6258-00 ISBN 073842255X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WCS V5.1 Performance
Tuning

Performance
guideline for your
e-commerce site

Understand the hot
spots in WCS

Explained with
implementation
examples

WCS V5.1 Performance Tuning describes tuning techniques
for WebSphere Commerce Suite V5.1. WCS V5 is built on a
new framework based on IBM WebSphere Application Server.
One of the main subjects discussed in this book is studying
the effects of the newly introduced Java technology.

This redbook covers the implications of WCS V5.1 in terms of
performance, and covers the tuning techniques you will need
for use with the new environment. e-Commerce
administrators and developers will find it a useful addition to
their technical library.

The contents of this redbook have been broken down by
individual component of WebSphere Commerce Suite to allow
quick access to the information you will need. WCS V5.1
Performance Tuning provides a single source of the
information you will need to tune your e-commerce site, and
is enhanced with examples, easy-to-follow instructions, and
ample illustrations.

Back cover
Acrobat bookmark

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Special notice
	IBM Trademarks
	Comments welcome

	Chapter 1. Enhancements in WebSphere Commerce Suite 5.1
	1.1 New architecture of WebSphere Commerce Suite 5.1
	1.1.1 The standard topologies of WebSphere Commerce Suite
	1.1.2 Our test environment

	1.2 WebSphere Commerce Suite application architecture
	1.2.1 WebSphere Commerce Suite and the HTTP Server
	1.2.2 WebSphere Commerce Suite and WebSphere Application Server
	1.2.3 WebSphere Commerce Suite and DB2

	Chapter 2. Quick reference guide
	2.1 Overview of tuning procedures
	2.2 HTTP server tuning tips
	2.3 Application server tips
	2.3.1 Adjusting Queue Sizes

	2.4 Commerce Suite server tips
	2.5 Database tuning tips
	2.5.1 Key database tuning parameters
	2.5.2 Database utilities
	2.5.3 dbclean
	2.5.4 Most frequently accessed tables

	2.6 Network tuning
	2.6.1 Full duplex mode
	2.6.2 Maximum Transfer Unit size
	2.6.3 thewall
	2.6.4 rfc1323

	Chapter 3. Tuning WCS instance
	3.1 Tuning the WCS cache
	3.1.1 Enabling Cache
	3.1.2 CacheDirsPerMember
	3.1.3 AutoPageInvalidation
	3.1.4 Cache invalidation triggers
	3.1.5 MaxObjectsPerMember
	3.1.6 CacheFilePath

	3.2 Session independent vs. session dependent cache
	3.3 Caching custom WCS commands
	3.3.1 Adding custom pages to WebSphere Commerce Suite cache
	3.3.2 Checking that the cache is working with your new settings

	3.4 Optimizing cache performance
	3.5 Setting up caching in 3-tier topology
	3.6 Job scheduler

	Chapter 4. Database tuning
	4.1 WebSphere Database Distribution
	4.1.1 WAS Administration Database
	4.1.2 WAS persistent session management database
	4.1.3 WebSphere Commerce Suite Database

	4.2 Planning for database layout
	4.2.1 Recommendations for tablespace layout

	4.3 Improving performance by data striping
	4.4 Separate tablespace for indexes
	4.5 Adjusting database bufferpool size
	4.6 Running reorg and runstats
	4.6.1 runstats
	4.6.2 reorg

	4.7 Effect of the database cleanup utility
	4.7.1 Running dbclean
	4.7.2 Identifying most frequently accessed tables

	4.8 Tuning other database parameters
	4.8.1 applheapsz
	4.8.2 pckcachesz
	4.8.3 maxappls
	4.8.4 locklist
	4.8.5 maxlocks
	4.8.6 maxagents

	4.9 Reducing deadlocks

	Chapter 5. Tuning WebSphere Application Server
	5.1 Adjusting queue sizes
	5.1.1 Closed queues versus open queues
	5.1.2 Queue settings in WebSphere
	5.1.3 Determining queue setting
	5.1.4 Queue adjustments
	5.1.5 Adjusting transport queue type

	5.2 Tuning JVM
	5.2.1 JVM heap size
	5.2.2 Monitoring garbage collection

	5.3 Relaxing auto reloads
	5.3.1 Servlet auto reload
	5.3.2 JSP reload interval

	5.4 Tuning EJB performance
	5.4.1 Tuning EJB container cache
	5.4.2 Tuning EJB pools

	5.5 Effect of enabling WAS session management
	5.6 Prepared statement cache
	5.6.1 Choosing a value for the prepared statement cache
	5.6.2 Enabling and changing the prepared statement cache
	5.6.3 Prepared statement key cache

	5.7 Call-by-reference
	5.8 Optimizing logging systems
	5.8.1 IHS logs
	5.8.2 WAS logs
	5.8.3 WCS logs

	5.9 Avoiding file serving servlet
	5.10 HttpSessions in JSP

	Chapter 6. Tuning Web Server
	6.1 Process handling
	6.1.1 MaxClients
	6.1.2 StartServers
	6.1.3 MaxSpareServers
	6.1.4 MinSpareServers
	6.1.5 MaxRequestsPerChild
	6.1.6 ListenBacklog

	6.2 Connection
	6.2.1 KeepAlive
	6.2.2 KeepAliveTimeout
	6.2.3 MaxKeepAliveRequests
	6.2.4 TimeOut

	6.3 Resource Usage
	6.3.1 RLimitCPU
	6.3.2 RLimitMEM
	6.3.3 RLimitNPROC

	6.4 Name resolution
	6.4.1 HostnameLookups

	6.5 Effect of using Fast Response Cache Accelerator

	Appendix A. Performance Monitoring Tools
	WCS Performance Monitor
	WAS Resource Analyzer
	WebSphere Site Analyzer
	Traffic analysis
	Integration with WCS

	Page Detailer
	AIX monitoring tools
	Tools to monitor general system performance metrics
	Tools to monitor network
	CPU tuning
	Disk I/O
	Memory

	DB2 Monitoring Tools
	Snapshot Monitor
	Event monitor
	The Explain Facility
	CLI/ODBC/JDBC Trace Facility

	Silk Preview

	Appendix B. Oracle tuning tips
	Top 10s
	Recommended values
	Tips for physical layout design
	Optimizing sorts

	Appendix C. Sample Outputs
	DB2 snapshot output
	DB2 event monitor sample output

	Appendix D. GCStats.java
	GCStats.java

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Index
	Back cover

